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Abstract

Microarchitectural side-channels exploit observations on the internal state of (cryp-
tographic) algorithms obtained by measuring side-effects such as contention on a shared
resource. In this project, we focus on cache side-channels, which were among the first
practically exploited information leakages. We provide an overview of the extensive
research on cache timing attacks and a more in-depth analysis of the wide-spread
Prime+Probe technique. We find that due to the empirical approach on cache side-
channels, the results are often tailored to specific software and hardware versions.
However, we consider it beneficial to revisit cache attacks and adapt them to new en-
vironments as the side-channels’ underlying root causes are likely to persist over time
and architectures because of their fundamental relation to performance. Therefore,
we revisit a classical chosen-plaintext attack, targeting OpenSSL’s AES-CBC imple-
mentation, and apply it on contemporary hardware. We explain the challenges of
implementing this attack in the presence of out-of-order execution, dynamic frequency
scaling, hardware prefetching, line-fill buffers and other optimisations. Furthermore,
we especially highlight the importance of an appropriate data structure to cope with
the previous challenges while minimising cache side-effects of the measurement itself.

Moreover, we contribute CacheSC, a library that implements different variants of
Prime+Probe targeting not only on virtually indexed caches but also including two
methods to attack physically indexed caches. The first attack requires superuser privi-
leges and translates virtual to physical addresses in user space by parsing the pagemap

file. The second approach uses collision detection to build the cache attack data struc-
ture without requiring special privileges. Finally, we use CacheSC to conduct an initial
review of the AES key scheduling algorithm as well as Argon2 and provide starting
points for novel applications of cache side-channels.
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Chapter 1

Introduction

Initially, cryptographers have developed cryptographic algorithms in purely abstract math-
ematical models. They analysed the specification, inputs, and outputs of those ciphers
for structural weaknesses. However, in practice, the implementation of a cipher is not a
black-box which transforms an input to an output as a mathematical function does. The
computations have side-effects on the state of the implementing device, which can leak
information on the internal state of the algorithm. Kocher presented in 1996 the first tim-
ing attacks against public key cryptosystems including Diffie-Hellman, RSA, and DSS [41].
Side-channel attacks are a very active field of research to this day. Additional to the field
of timing attacks started by Kocher, researchers analyse the leakage due to power usage,
electromagnetic signals, faults, and more. In this project, we focus on cache-based timing
side-channels.

For a long time, CPU performance naturally increased due to the technical progress of
increasing the transistor density predicted by Moore’s law. However, as Herb Sutter stated
in 2005 ‘the free lunch is over’ [62]. Physical limitations such as heat dissipation, power
consumption, and leakage made it more and more difficult to make single processors faster.
Therefore, the industry turned to multi-core and hyper-threading architectures to increase
performance, as well as various low-level optimisations. The introduced concurrency in-
creased the processor’s complexity significantly and led to new types of side-channel attacks
such as Spectre [40] and Meltdown [45]. Those attacks break the isolation between processes
by exploiting side-effects of speculative performance optimisations. There seems to be a fun-
damental trade-off between performance and side-channel leakage. Many mitigations have
a severe impact on the processor speed and are thus somewhat reluctantly implemented in
practice.

The previous historical overview provides good reasons to revisits microarchitectural
side-channels. Processors have evolved significantly since the first timing attacks in 1996.
However, it seems likely that contemporary systems are still vulnerable to older side-channel
attacks due to the performance-security trade-off. Moreover, we look at the granularity
and precision of observations on modern architectures. Therefore, the contributions of this
project are the following:

1. We provide a literature overview of cache timing side-channel attacks.

2. We show how to perform cache side-channel attacks on contemporary hardware in the
presence of out-of-order execution, concurrency, hardware prefetching, line fill buffers,
and write buffers. We implement our findings in CacheSC, a library for cache side-
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channels that simplifies further research on the effect of cache-based observations on
newer ciphers.

3. We reproduce the one-round attack on OpenSSL-0.9.8, one of the first cache side-
channel attacks, from Osvik et al. [51] on a Dell Latitude E6430 with Ivy Bridge
processors.

4. We analyse the implementation of the AES key scheduling algorithm in OpenSSL-
1.1.1f and show that some AES keys are weaker than others in terms of their cache
footprint. Already trivial observations reduce the keyspace of more than 0.11% of all
keys by two bits.

5. We evaluate the granularity of cache side-channel observations on Argon2d and provide
ideas for further research.

1.1 Literature Review

This section provides a brief overview of the cache side-channel related literature. The goal
of this review is to serve as an entry point in this field rather than to be a complete list.

Kocher started the field of timing attacks in 1996 by publishing the first side-channel at-
tacks against public key cryptosystems, including Diffie-Hellman, RSA, and DSS [41]. Kelsey
et al. mentioned the idea of using caches as side-channels when they introduced the notion
of side-channel cryptanalysis [38]. Page expanded this idea and presented theoretical cache
attacks in 2002 [52]. Moreover, Page described the trace-driven and time-driven cache attack
types. While the first attacks assume a complete profile of the victim’s cache activity, time-
driven cache attacks consider a less powerful attacker that makes aggregated observations
such as the total execution time of a cipher. Later, Osvik et al. introduced attacks based
on the observation of cache sets [51], which is sometimes considered as the third type of
cache attacks, called access-driven. Tsunoo et al. discussed the feasibility of cache attacks
on ciphers that use many S-box lookups [64] in 2003 and implemented the first cache attacks
on DES and 3-DES. They improved their results in 2006 by considering the cipher structure
[65].

One of the first practical cache side-channel attacks were presented simultaneously by
Bernstein [9] and Osvik et al. [51] in 2005. The latter introduced the time-driven Evict+Time
and the access-driven Prime+Probe, which are two different approaches to practical cache
attacks that we discuss in Section 2.2. We implement Prime+Probe on a modern processor,
among other building on insights from the follow-up paper of Osvik, Tromer and Shamir,
which includes a more in-depth discussion of their attacks against OpenSSL-0.9.8 and Linux’s
dm-crypt [63]. Bernstein described a time-driven remote attack which is a variation of
Evict+Time. Bonneau et al. significantly improve on the performance of Bernstein’s AES
attack in 2006 by exploiting cache collisions [14]. Ashokkumar et al. presented an efficient
access-driven AES key retrieval attack that only needs 6-7 plaintext-ciphertext blocks [8].
After Neve thoroughly analysed Bernstein’s attack in his doctoral thesis [50] and raised
questions about its practicality, Acıiçmez et al. presented a more realistic remote attack
in 2007 [5], which works without resetting the cache since this would require access to the
target platform.

Bertoni et al. [10] and Lauradoux [44] introduced the first trace-driven attacks on AES in
2005. Bertoni et al. exploit external collisions between processes by flushing S-box entries
and detecting cache misses using a power trace analysis. Lauradoux presented an attack on
the first round of AES using a combination of cipher-internal collision and cache attacks.
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Acıiçmez et al. improved on the previous two results by significantly reducing the required
number of observations [4].

Gullasch et al. presented practical access-driven cache attacks on AES [25], which im-
proved on the AES attacks of Osvik et al. [51] by using fewer observations and no plaintext
information. Gullasch et al. achieve higher-granularity observations of cache hits and misses
by exploiting the Completely Fair Scheduler (CFS) of modern Linux kernels. They gave rise
to the new class of attacks called Flush+Reload. Yarom and Falkner extended the ideas of
[25] and applied Flush+Reload to attack the last level cache (LLC) [73]. The LLC is shared
between cores and thus enables a variety of cross-core and cross-VM attacks. Irazoqui et al.
present a fast Flush+Reload attack recovering full OpenSSL AES keys in a realistic setting
with co-located VMware VMs [34]. Gülmezoğlu et al. presented a fully asynchronous and
faster cross-VM Flush+Reload attack exploiting memory deduplication of virtualised sys-
tems [26]. Yarom and Benger applied the Flush+Reload attack to recover ECDSA nonces
form OpenSSL [72].

Other cross-VM attacks before the application of Flush+Reload include the following:
Ristenpart et al. showed that it is possible to identify a target VM in a third-party cloud
computing environment and obtain a co-located VM to mount cross-VM side-channel attacks
[57]. Zhang et al. demonstrated the first fine-grained attack on a symmetric multiprocessing
system. They implemented an access-driven side-channel attack to extract ElGamal decryp-
tion keys from victims using libgcrypt [74]. Weiß et al. applied Bernstein’s remote attack
to an embedded ARM-based platform with virtualisation [69]. The first that studied cache
attacks on embedded systems were Bogdanov et al., who introduced a time-driven differential
cache-collision timing attack [13]. Irazoqui et al. transferred Bernstein’s attack to Xen and
VMware VMs attacking various libraries, including OpenSSL and libgcrypt [6].

Although a substantial part of the research focused on AES, some also targeted RSA.
Already the first side-channel attacks in 1996 by Kocher targeted public key cryptosystems
[41]. Brumley and Boneh developed a practical remote timing attack against OpenSSL, re-
covering the private key by exploiting Montgomery reductions [16]. Acıiçmez et al. exploited
the Montgomery multiplication of OpenSSL’s RSA implementation as well, but they were
the first to use evictions in the instruction cache to distinguish multiplication from squaring
[3]. Chen et al. improved on the previous result with a trace-driven instruction cache timing
attack [18]. Yarom and Falkner mounted a Flush+Reload attack on the RSA implementation
of GnuPG [73].

Countermeasures against cache attacks include making the program’s memory accesses
independent from any secret data either in software ([15, 46, 42, 36]) or with dedicated
hardware instructions such as AES-NI [24]. Other approaches ([19, 28, 55]) try to detect
a malicious process by monitoring the hardware performance counters since the previous
cache attacks cause significantly more cache hits and misses than usual. However, Gruss
et al. [23] introduced a new attack called Flush+Flush, which evades such detection by not
causing any cache misses and minimal cache hits. Their attack relies only on the execution
time of the clflush instruction, which is slower when the data was cached. Ashokkumar
et al. showed that the AES implementations of recent OpenSSL versions are still vulnerable
to cache side-channels, despite only using 256-byte S-box tables.

Yarom published a microarchitectural side-channel toolkit called Mastik that implements
Prime+Probe, Flush+Reload and Flush+Flush attacks [71]. We discuss in Section 2.3 that
such a library is quickly outdated as cache side-channels are fragile due to their strong
dependence on the low-level architecture.
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We conclude this section by referring to the survey of microarchitectural side-channels
by Qian, Yarom, Cock, and Heiser [22]. This survey features a well-arranged table with
most known microarchitectural attacks, clearly categorised and including the targets and
methods of every attack. Moreover, the survey discusses current countermeasures in-depth
as well as future directions and challenges.

1.2 Methodology

The approach to analyse microarchitectural side-channels differs from other fields of infor-
mation security – especially from cryptography – in its empirical rather than mathemat-
ically rigorous approach. This different methodology is a consequence of both a complex
environment and incomplete information. First, the information leakage typically results
from complex interactions including temporal components or physical concomitants, which
is challenging to model in an abstract analysis, and the main reason why those side-channels
exist in the first place. Second, hardware manufacturers often do not entirely document the
architectural details of their components in an effort to maintain a competitive advantage
over their competitors. As a consequence of this complex setting, we find it useful to model
the hardware as a black-box. We can then create hypotheses on the internal behaviour of
specific components and design experiments to accept or refute those explanations.

This empirical methodology comes with the downside of a restricted area of application
of any reverse-engineered results. The exact conclusions and developed tools are likely to
be limited to particular hardware models and microcode versions. However, we expect the
side-channels’ underlying causes to persist over a long time, because of their connection to
performance. On the one hand, complex performance optimisations are the root of many
side-channels, and on the other hand, proposed mitigations often have a severe performance
impact. Therefore, side-channels are likely to persist because hardware manufacturers will
continue to strive for faster products.

In conclusion, we need to take an empirical approach to analyse microarchitectural side-
channels due to incomplete information and a complex execution environment. While the
obtained results and written tools may not apply directly to other hardware or software
versions, the observed underlying phenomenon is likely to persist. As a consequence, the
experiments and results might need to be revised on architectural changes or even microcode
updates. To ease this revision, we consider it vital to document the conducted experiments
as well as the reasoning behind their structure in detail.
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Chapter 2

Cache Side-Channels

Cache side-channels are one of the most well-known sources of information leakage. In this
chapter, we start by briefly recalling some essential background knowledge on the cache
architecture. Then, we introduce Prime+Probe, a fundamental approach to cache side-
channel attacks dating back to the pioneering paper ‘Cache Attacks and Countermeasures:
the Case of AES’ [51] by Osvik, Shamir and Tromer. Afterwards, we discuss various practical
challenges that occur when applying this attack on L1 caches of contemporary hardware.
We will see that developments in modern computer architecture – such as multi-threading,
out-of-order execution, prefetching and variable clock frequency – make it more difficult
to obtain reliable side-channels. Furthermore, we apply Prime+Probe to the OpenSSL key
scheduling algorithm and find that some keys are weaker than others. Finally, we discuss
how to apply Prime+Probe on physically indexed caches and use those extended capabilities
to analyse the granularity of cache side-channel observations on Argon2d.

2.1 Cache Architecture

While hardware tries to maintain the illusion that processes run in an isolated environment,
most components inherently need to be shared for efficiency. For instance, the memory of
programs is separated by the use of different virtual address spaces, preventing a malicious
application from reading the data of a benign one. However, the physical addresses used
underneath this abstraction can be shared between different processes, e.g. for common li-
braries. Caches are shared as well, which can leak detailed information about other processes
running at the same time.

Table 1 lists the different cache levels on a Dell Latitude E6430. The L1 cache is the
smallest and fastest memory buffer, and is usually the physically closest cache to the core.
It is separated into a data cache (L1d) and an instruction cache (L1i). The last level cache,
in our case L3, is shared with other processors1. The access times in Table 1 are empirical
measurements for Ivy Bridge from [32], which seem to be plausible compared to the values
from the Intel Optimization Manual [30] in the table ‘Lookup Order and Load Latency’ for
Sandy Bridge. Note that the difference between an L1 hit and an L2 hit is only eight cycles.
We will discuss in Section 2.3.2 how we can achieve time measurements that are precise
enough to distinguish cache hits and misses. Figure 1 visualises standard cache terminology
of a set-associative cache: cache lines of B bytes are the unit of data transfer; the cache

1On Ubuntu, the lscpu command provides various information about the devices’ CPU architecture.
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2.1. Cache Architecture

Cache Size Sets Associativity Shared Access Latency

L1d 32 KiB 64 8 no 4-5 cycles
L1i 32 KiB 64 8 no -
L2 256 KiB 512 8 no 12 cycles
L3 4096 KiB 4096 16 yes ∼30 cycles

Table 1: Cache sizes on a Dell Latitude E6430 with Intel R© Core
TM

i7-3520M CPU @
2.90GHz.

Figure 1: Visualisation of the cache terminology as well as a cache addressing example: for
S = 64 and B = 64, the given memory address maps to set 3 and retrieves the bytes of this
cache line at offset 50.

consists of S sets, each having N slots for cache lines. When all slots are occupied, the cache
replacement policy decides which line is evicted (i.e. removed from this level of cache while
possibly remaining in higher cache levels). Note that the cache is of size S ·N ·B bytes.

Furthermore, Figure 1 shows a concrete example of how the processor determines the
set, offset, and tag of a memory address to search the cache and retrieve a line in case of a
cache hit. Of course, the same computation determines in which cache sets some accessed
data is placed. We should keep in mind that for accessing d bytes of data starting at some
address t0, the processor fetches all k cache lines that include some of the bytes at positions
t0, t0 + 1, . . . , t0 + (d− 1). More precisely, it fetches t1, t1 + 1, . . . , t1 + (k ·B − 1) such that
t1 ≤ t0 is the first address smaller or equal to t0 that is aligned to B bytes (i.e. at the start
of a cache line) and t1+(k ·B−1) ≥ t0+(d−1). In other words, the processor transfers data
on the granularity of cache lines and thus chooses a superset of cache lines that includes the
requested data.

After covering the fundamental cache knowledge, we would additionally like to mention
the following types of buffers that are both less well known and often sparsely documented:

• The Line Fill Buffers (LFB) are located between the L1 and the L2 cache and combine
stores and loads between those caches for better performance. Moreover, the Intel
Optimization Manual [30] describes that the LFB allocates an entry whenever an L1
cache miss occurs. When a subsequent load hits the same location, the processor
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knows that a previous operation already initialised the data fetching process. The
LFB can also buffer data that already arrived from L2 until it is transferred to L1.
According to the authors of RIDL [68], a paper introducing a class of speculative
execution attacks that mainly targets LFBs, there are micro-optimisations where the
CPU (speculatively) serves a load from the LFB. Those optimisations are relevant for
cache side-channel attacks as the time to serve entries from the LFB could be different
than both an L1 hit and miss. There are ten LFB’s on the Ivy Bridge microarchitecture
of our test laptop.

• Store Buffers hold memory write requests until they are completed. When a store
operation enters the re-order buffer (ROB), an entry is allocated in the store buffer until
this operation exits the ROB, and the data is added to L1. Store-to-load forwarding is
an optimisation where a subsequent load can directly use the data from the store buffer.
Those optimisations again impact cache side-channel measurements as accessed data
can reside in store buffers and thus can thwart an attack based on a specially prepared
L1 cache (see Section 2.2). More information on store buffers and their optimisations
can be found in the Intel Manual [30] and the Fallout paper [17], which is together
with RIDL [68] part of the MDS attacks [48] that were independently discovered by
various researchers. Fallout uses store buffers to implement Meltdown-like attacks on
recent CPUs.

• Load Buffers function as a queue for memory loads: the CPU allocates a load buffer
entry for every load operation it dispatches. There is little information on those buffers,
but they seem to be a rather invisible architecture feature. The ZombieLoad paper
[59] by Schwarz et al., which uses a combination of the all previously described buffers
and faulting load operations to leak data, provides some further information.

2.2 Prime+Probe in Theory

Prime+Probe describes the general cache side-channel technique visualised in Figure 2. The
adversary allocates a data structure of size S ·N ·B. During the so-called prime phase, he fills
the entire L1 cache by accessing all entries of his data structure. When the victim process
executes, all its memory accesses evict cache lines from L1. During the probe phase, the
adversary re-accesses his data and measures for which cache sets the accesses take longer.
In those sets, some of his cache lines were evicted, most likely by the victim, and re-fetching
them is slower. We discuss in Section 2.3 that this measurement is noisy since the OS and
other processes could cause evictions as well. Listing 1 shows the simplified pseudo-code for
the prime phase and Listing 2 shows the probe phase. We make those implementations and
various practical challenges more precise in Section 2.3.
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Figure 2: Visualisation of Prime+Probe: first, in the prime phase, the adversary fills the
entire L1 cache with his data, then the victim process executes and evicts some cache lines.
Afterwards, in the probe phase, the adversary times the accesses to his data and learns in
which cache sets the victim process evicted some cache lines.

1 function prime ( )
2 foreach cache l i n e L in L1 do
3 read (L)
4 end
5 end

Listing 1: Pseudo-code of prime phase.

1 function probe ( )
2 // d i c t i o n a r y f o r t imings
3 T = {}
4 foreach cache l i n e L in L1 do
5 tstart = time ( )
6 read (L)
7 tend = time ( )
8 T [L] = tend − tstart
9 end

10 return T
11 end

Listing 2: Pseudo-code of probe phase.

We would like to mention the following two alternative approaches to cache side-channels:

• Evict+Time was independently developed by Bernstein [9] and Osvik et al., where the
latter coined this term together with their presentation of Prime+Probe. Evict+Time
repeatedly times the victim process while evicting all cache lines of a specific set.
When the adversary removed the victim’s data, it has to be re-fetched, and the victim
process is slower. Repeating this trial-and-error procedure, the adversary learns which
cache set the targeted process uses. Therefore, unlike Prime+Probe, this approach
times the victim process’ run time and not directly the cache access times. This has
the disadvantage that the attacker can only make a single observation (the duration
of the access) and not a measurement for each cache set. This reduced observation
granularity can increase the required number of samples substantially and make the
attack less practical. Both Evict+Time and Prime+Probe need to have precise time
measurements and to observe multiple executions with guessable input.

• Flush+Reload was introduced by Yarom et al. in [73] as an extension of another side-
channel attack from Gullasch et al. [25]. Flush+Reload is similar to Prime+Probe
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but targets the last level cache (LLC) by precisely evicting cache lines with clflush2.
While this enables attacks across cores (even cross-VM attacks [73]), it requires shared
memory between processes (for example, due to memory de-duplication).

We decided to focus on Prime+Probe because it can achieve more accurate time measure-
ments than Evict+Time while relying on fewer pre-conditions than Flush+Reload. Moreover,
the LLC on current architectures provides the additional complication of using complex
addressing, an undocumented feature requiring the reverse engineering of hash functions
to deduce the cache mappings as described in [33, 47]. While countermeasures against
Flush+Reload exist (e.g. to limit access to clflush or to prevent page sharing), it seems
unlikely that the L1 cache will no longer be shared between processes due to the significant
performance impact. Therefore, we expect Prime+Probe, or similar attacks focussing on
smaller caches, to persist.

2.3 On the Challenges of Applying Prime+Probe to Contemporary Hard-
ware

In this section, we discuss the challenges that we faced when implementing the Prime+Probe
attack on a Dell Latitude E6430 with an Ivy Bridge processor. We started by using Mastik
[71], a microarchitectural side-channel toolkit developped by Yarom, that abstracts the
low-level details of cache attacks. However, after our Prime+Probe implementation with
Mastik did not produce the desired results, we wrote CacheSC, a library that specialises
on Prime+Probe attacks for contemporary hardware. During this process, we discovered
which features of modern processors we have to take into account to perform successful
cache side-channel attacks. In this section, we address the following questions:

• How should we approach the complexity of modern processors in general?

• Can we achieve the co-location of attack and victim processes on the same core in a
multi-core environment?

• How can we filter the measurement independent cache footprint?

• How can we achieve precise timing information in the presence of out-of-order execu-
tion and dynamic frequency scaling?

• Which data structure for prime and probe avoids hardware prefetching while not pol-
luting the cache itself when we traverse it?

• How does the compiler affect our side-channel library? Which compiler flags and C
constructs can we use to avoid undesirable modifications?

• What are some possible sources of noise?

2.3.1 Simplicity Is Key

We started by trying to use Mastik to perform a cache attack against the lookup tables
of AES-CBC encryption in OpenSSL-0.9.8. Mastik implements Prime+Probe as a program
that does many back-to-back repetitions of prime and probe, reporting the results of each
iteration. Therefore, running this concurrently to a victim process should leak which cache

2clflush is an x86 instruction that removes the cache line from the last level cache. It removes the
cache line from all lower cache levels too, if the caches are inclusive (as it is the case with the Ivy Bridge
architecture).
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sets the victim accessed. However, we realised that this setting is too complicated to start
with: first, in the long list of cache access time measurements, it is not straightforward
how we can find the measurements that were precisely before and after the victim executed.
Second, due to scheduling, we do not know whether the victim and attacker processes run
on the same core in parallel. Third, it is a priori unknown, which cache sets the OpenSSL
library call accesses; therefore, we do not know for which pattern we are looking.

We simplified our experiment step-by-step, starting by controlling when the victim pro-
cess runs. We slightly extended Mastik to perform the prime and probe phases separately.
Then, we forked the victim process from the attacker and set up inter-process communi-
cation using pipes. In other words, the attacker can execute prime, trigger the encryption
of the victim and then perform probe after the victim reported that it finished executing.
However, we observed that the two processes avoid each other by moving to different cores,
which means that they no longer share the same cache. To prevent this, we set the CPU
affinity3 for each process, which ‘determines the set of CPUs on which it [the process] is
eligible to run’ [58]. To reduce the interference of other processes, we set the kernel param-
eter isolcpus [39], which isolates the CPU from the general scheduler. Only processes that
explicitly set the CPU affinity run on this core. Moreover, we disabled hyperthreading as
well, to prevent that two virtual cores share the same physical core (since the affinity targets
virtual cores).

Therefore, we already bypassed a lot of sophisticated features of modern processors to
start with simple measurements. However, we were still not able to correlate the cache
set timing measurements with the key used by the victim for AES encryption (we explain
this cache side-channel attack in detail in Section 2.5.3). Therefore, we decided to simplify
the scenario further and refrain from using multiple processes. Moreover, we replaced the
OpenSSL library call with a simple memory read, of which we know precisely in which cache
set it causes an eviction.

Despite those simplifications, we were still not observing the expected evictions. How-
ever, we simplified the experiment to a point where we are able to identify further issues,
which we discuss in the next sections.

Conclusion: Side-channel attacks on modern computer architectures have various com-
plex dependencies. Therefore, it is advisable to verify your expectations on simple exam-
ples, where you control as many extraneous variables as possible, before applying cache
attacks in more realistic scenarios.

2.3.2 Precise Time Measurements

Table 1 shows that the difference between an L1 cache hit and miss is only eight cycles.
Therefore, the measurement routine must produce reliable results on the precision of cycles
in the presence of superscalar and out-of-order execution, with as little noise as possible.
Before we improved the time measurement of Mastik, we saw random patterns of slower
cache sets that were independent of the victim’s memory accesses. We were able to remove
this effect by using better fencing against previous and subsequent instructions.

According to Intel’s white paper on ‘How to Benchmark Code Execution Times’ [54],
the best way to serialize instructions is to use cpuid and rdtsc in the way we summarised
in Listing 3. To understand why this is a smart way to measure time, we first describe

3The CPU affinity can be set with the unprivileged sched setaffinity function for the current process.
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1 cpuid

2 rdtsc

3 /∗ s t o r e timestamp ∗/
4 /∗ measured code ∗/
5 rdtscp

6 /∗ s t o r e timestamp ∗/
7 cpuid

Listing 3: Code benchmarking following the recommendation of Intel’s benchmarking
white paper [54].

the used instructions: cpuid, while intended for CPU identification, is the only instruction
that, according to the Intel manual [29], ‘can be executed at any privilege level to serialize
instruction execution’. The instruction rdtsc ‘reads the current value of the processor’s
timestamp counter’ [29]. The rdtscp instruction additionally waits until all previous in-
structions have finished before sampling time. Now we proceed to explain Listing 3: the
first cpuid ensures that all previous instructions have terminated before we read the cur-
rent timestamp and store it. Otherwise, overlapping instructions can non-deterministically
slow down the measured code, because depending on the execution state before starting the
measurement, more or less additional instructions are measured. After the code we want
to measure, we use rdtscp instead of rdtsc because then all measured operations have to
finish before we read the timestamp a second time, instead of being executed in parallel. On
the last line, we use cpuid again to prevent subsequent instructions from already starting
to execute while the timestamp is read and thereby slowing rdtscp down. While cpuid can
have high variance, this does not propagate to our time measurement since we use it before
and after we sample the timestamp.

On modern computer architectures, the processor timestamp poses another challenge:
today, processors use dynamic frequency scaling to change their speed depending on the
current utilisation. However, the timestamp normally uses a constant rate, which is sig-
nalled by the constant tsc flag in /proc/cpuinfo. Therefore, the relative meaning of
one cycle can differ depending on the actual processor frequency. We deactivated, in the
spirit of Section 2.3.1, the dynamic frequency scaling by disabling Intel SpeedStep R© and
Intel TurboBoost R© in the BIOS. Moreover, we used the cpufreq [20] tool to observe the
frequency and, if possible, set a governor that does not change it. On the Dell Latitude
E6430, despite the previously mentioned efforts, we still did not achieve an entirely fixed
frequency. However, we observed that the ‘performance’ governor always increased the clock
frequency to the maximum when we pinned a process to that core. Thus, we ensured some
preliminary CPU intensive processing runs before we start the measurements so that the
clock frequency is most likely fixed to the maximum value.

After modifying Mastik’s time measurements in the above-described manner, the random
pattern disappeared, and all cache sets showed approximately the same mean access time.
However, even those that we expected to be slower because of targeted evictions did not
stand out. We discuss in the next section that the data structure and implementation of
Mastik were suboptimal for our use case and concealed the evictions.

11
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Figure 3: On the left, we have an array of S ·N entries with B bytes each, filling the entire
L1 cache on the right.

Conclusion: Out-of-order and superscalar execution, as well as dynamic frequency scal-
ing, must be taken into account to achieve reliable and precise time measurements with
low noise. We presented the Intel recommended method for fencing against surrounding
instructions.

2.3.3 Developing the Appropriate Data Structure

We noticed that Mastik’s implementation stores the measurement results during the probe
phase to an array in memory. Those writes could interfere with the measurements by bring-
ing other data to L1. Hence, we might measure more evictions than only those caused by the
victim process. We decided to initiate our library CacheSC and implement L1 cache side-
channel attacks from scratch instead of adapting Mastik, to have a simpler implementation,
specialised on Prime+Probe attacks.

Figure 3 shows the initial idea of a data structure that fills L1. We use an array of the
cache line sized struct’s shown in Listing 4. The array contains as many cache lines as
necessary to fill the entire L1 cache. However, the observations obtained with this simple
structure did not meet our expectations. Next, we discuss three additional requirements
that we found to be desirable for a useful data structure:

1. Minimise cache pollution: as suggested in Osvik et al.’s extended and refined paper
[63] of [51], we reserve a field in the struct for storing the access time measurement.
This minimises the cache pollution by reusing the cache entry that we just loaded and
measured instead of writing to a different memory location.

2. Avoid hardware prefetching: the näıve approach of linearly traversing the described
array fails, which is likely caused by the prefetcher following the linear access pattern
and guessing the next data blocks, which it then retrieves to L1 ahead of time. In
other words, most measured data would be in L1, independent of whether the victim
evicted it or not, because this data would be prefetched before we measure its access
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1 typedef struct c a c h e l i n e t {
2 cacheline ∗next , ∗prev ;
3

4 uint16 t cache se t , f l a g s ;
5 uint32 t time msrmt ;
6

7 char padding [ ] = /∗pad to cache l i n e s i z e ∗/ ;
8 } cacheline ;

Listing 4: Cache line struct.

time. To break the linear pattern, we create a doubly-linked list of cache lines in a
randomised order.

3. Reduce overhead: the time measurement routine from Section 2.3.2 has a significant
overhead due to rdtscp and the mov’s to save the timestamp4. When we measured
the access time to each cache line separately, we were not able to measure evictions:
Figure 8b (which we explain in more detail in Section 2.5.2) shows the average cache
access time measurement for a cache set, where we measure each line individually and
take the sum of the results for all lines in the same set. We see that the measurements
look uniform; however, in Figure 8a the same experiment shows one cache set that
stands out. We achieve this by performing a single time measurement for all cache
lines in the same cache set. This reduces the overhead by a factor of N , since we no
longer sum the overheads of each cache line measurement to obtain the overall cache
set timing.

Based on these requirements, we implement our data structure as follows: we use the Fisher-
Yates shuffle algorithm to obtain a random permutation of cache sets. Each cache set itself
is a doubly-linked list of a random permutation of the N cache lines of the array in Figure 3
that map to this set. Figure 4 visualises the final data structure, where the single elements
are of the type shown in Listing 4.

Traversing our data structure consists of chasing pointers from one cache line to the next
in a linked list. We now argue that this gives us more control over which cache lines are
evicted in the presence of out-of-order execution and runtime optimisations. We can use
this to either obtain more precise observations or amplify the measured effect, which we
explain at the end of this paragraph. First, we argue why pointer chasing is beneficial. In
essence, the processor cannot reorder our memory accesses during the probe phase, because
we store the address of the next cache line in the previous one. Since the processor cannot
predict the random order, it has to finish reading the previous cache line before it can
access the next one. Of course, the execution engine cannot bypass the fencing explained
in Section 2.3.2, but it could reorder the N accesses that we make within the single time
measurement for a cache set. The order of those cache line accesses is relevant because it
can cause cache pollution depending on how prime and probe traverse the linked list. For
example, say {A,B,C,D,E} are cache lines that map to the same set in a 4-way associative
cache. Assuming we start on an empty cache, accessing (A,B,C,D) in this order during
priming fills the cache set. Now, assuming the victim accesses E, this most likely evicts A,
since it is the least recently used entry (L1 uses a pseudo-LRU cache replacement policy, see

4On the Latitude E6430, this overhead was around 50 cycles.
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Figure 4: This is a concrete example, visualising our data structure used for Prime+Probe.
The randomised doubly-linked list consists of S cache sets that are linked together in a ran-
dom permutation, where each set contains N cache lines that are also randomly permuted.

also Section 2.3.5). When we access the cache lines during probing in the same order as in
priming, then A would evict B, since it is the LRU line after A has been replaced by E.
Next, we measure B, which now needs to be refetched and evicts C and this chain reaction
continues for all blocks of the cache set. The other option that we have is to access the cache
lines in the reverse order during probing, i.e. (D,C,B,A) and thus minimise the chance of
such chain reactions. Now, when we access A, we already measured all other cache lines, so
it does not influence the measurement when they are evicted. We conclude this paragraph
by arguing that both scenarios can be desirable for an attacker. On the one hand, chain
reactions mean that we cannot distinguish the number of evictions in a cache set. As soon
as there is a single eviction, it triggers a chain reaction, and we measure N slow accesses.
On the other hand, in scenarios where we only want to measure a single eviction, chain
reactions can be used to amplify the time measurement since we measure N slow cache
accesses instead of a single one.

We have, however, two important remarks on the described chain reactions. First, they
likely make our measurements noisier. The measured time is more dependent on the inter-
actions of the line fill buffers and the L1 cache since we access those cache sets immediately
after evicting them. The Intel optimization manual [30] states that ‘the L1 DCache can han-
dle multiple outstanding cache misses and continue to service incoming stores and loads’.
Therefore, a read operation could still be a cache hit even though the previous read evicts
that entry from the cache, depending on the exact timing and line buffer state. Second, this
chain reaction behaviour seems to depend on the microarchitecture. While we could not
observe it on our test laptop, it was present on a newer Skylake processor.

Conclusion: We fill the cache with a doubly-linked list of a random permutation of cache
line sized entries to avoid interference caused by out-of-order execution and hardware
prefetching while minimising the cache side-effect of our measurements.
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2.3.4 The Compiler

We learned that it is essential to be aware of what modifications the compiler does, since
our measurement code is sensitive to slight changes. We obtained the best results by using
the optimisation level -O1 of gcc, which may seem slightly counter-intuitive at first sight,
because it is not the lowest level. However, we noticed that -O0 has a large cache footprint,
as it seldomly moves values to registers but inefficiently loads them from memory each time.
This is undesirable, as it interferes with our cache measurements.

Furthermore, it is indispensable to inspect the assembly code of a compiled executable
due to instruction reordering and smart register usage. For example, the compiler might
realise that a victim process always accesses the same memory location in a loop of repeated
measurements and decide to place this value in a register. This choice seriously affects the
measurement: the victim does no longer evict any cache line, and thus we are observing
another behaviour than intended. Without checking the assembly code, we run the risk of
drawing the wrong conclusions.

Moreover, it is advisable to write the measurement-critical code (i.e. everything con-
nected to the prime and probe phases, the time measurement and the victim’s eviction) in a
way that reduces the compiler’s freedom. For this purpose, we directly inline assembly code
with asm volatile. Additionally, we used static inline functions in our library to avoid
the overhead of function calls as well as the associated register preservation movements.

Another potential issue is branch prediction, i.e. when the processor speculatively starts
executing code. Mispredictions have a penalty because the speculatively executed instruc-
tions must be discarded. We have two options to prevent this from influencing our mea-
surement: for small loops, we can consider to unroll them entirely and therefore remove
the branch in the first place. However, we observed that this is not a viable solution for
larger branches as it introduces more noise, likely because the program becomes too large.
In such cases, we can use the compiler flag builtin expect to optimise the compiled
code for the measurement-critical branch decision. For example, when we have a loop over
many measurements, we can use this flag to tell gcc to expect that the branch back to the
start of this loop is usually taken. While the real effect of this flag depends on the exact
scenario, on a high level, the compiler arranges the code such that the expected case is the
one that will more likely be speculatively executed. Listing 5 shows the source code of an
artificial example: to optimise for the if branch, the assembly code in Listing 6 is created,
and the code in Listing 7 to favour the else branch. The difference is which branch body
comes after the compare instruction because, assuming the branch predictor has no other
information, it is more likely to execute the subsequent instructions speculatively since they
are already available. Of course, in reality, this optimisation only makes sense for more
computation-intensive branch bodies and depends on the surrounding code.

1 i f ( builtin expect( i == 0 , α ) ) {
2 i = 1 ;
3 }
4 else {
5 i = 2 ;
6 }

Listing 5: builtin expect source code for the expected value α = (i == 0).
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1 cmp %i , 0
2 jne 5
3 mov %i , 1
4 jmp 6
5 mov %i , 2
6 ret

Listing 6: builtin expect for α = 1.

1 cmp %i , 0
2 je 5
3 mov %i , 2
4 jmp 6
5 mov %i , 1
6 ret

Listing 7: builtin expect for α = 0.

Conclusion: The compiler’s modifications can interfere with our measurements by re-
ordering instructions or causing additional memory accesses. Therefore, we should in-
spect the assembly code of the executable regularly.

2.3.5 Remaining Noise Sources

After we discussed in this section various challenges and our solutions to them, we point out
some remaining sources of noise: the cache replacement policy, write buffers and LFBs.

First, the L1 cache only approximates the LRU cache replacement policy, because it is
too expensive to keep track of all accesses accurately. According to the results of Abel and
Reineke, who reverse-engineered cache replacement policies in [2] and [1], the Ivy Bridge
processor of our Dell laptop uses a Tree-PLRU replacement policy. Since this is an approx-
imation, we have no guarantee that the complete L1 is filled after the prime phase; some of
our loads could have evicted other lines from our data structure instead of replacing older
entries. The initial state of the cache is unknown, and invd, the only instruction to reset
the cache, can only be executed in kernel space. Further research could try to determine
how many prime phases are needed to make sure all cache lines are in L1, starting from a
random initial cache state. However, we did not observe this effect to cause significant bias
in our results, which might be because wrong evictions are rare or maybe the replacement
policy’s mistakes are uniformly distributed.

Second, one hypothesis is that the line fill buffers cause the four cycles variance that
we see in most measurements: some reads could be served directly from the LFBs, instead
of L2, and thus be faster. Those values might still reside in the LFB because they were
requested shortly before or they were evicted in L1 but not yet written back to L2. Write
buffers could have a similar effect: modified lines can still be stored in a write buffer and
supplied to a subsequent load due to store-to-load forwarding. This optimisation might be
faster than an L1 lookup. Connected to this, we observe that overwriting instead of reading
a memory location can decrease the noise in some scenarios (or vice versa).

2.4 Lifting Prime+Probe to Physically Indexed Caches

In this section, we discuss how we can apply Prime+Probe on larger, physically indexed
caches. The papers we review in Section 1.1 all either target L1 with Prime+Probe or
similar approaches, or they attack L3, often using clflush. However, we argue that applying
Prime+Probe on L2 has advantages over both of those approaches. Moreover, we discuss
how to build an attack data structure for physically indexed caches and contribute a proof
of concept implementation. On the one hand, the disadvantage of attacks on L3 is that
they are easier to mitigate than other attacks by enforcing a more stringent separation of
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processes (e.g. avoiding shared memory). On the other hand, L1 attacks might provide
detailed observations, but the size of the first level cache is limited. A program with many
or large memory accesses (such as Argon2, see Section 2.5.5) can quickly fill the entire
cache. In that case, Prime+Probe on L1 does no longer provide useful measurements, as
all attacker data is evicted. Therefore, it is beneficial to apply Prime+Probe on the larger
L2. Moreover, the penalty of a cache miss in L2 is typically larger than one in L1 (for our
test laptop, we see in Table 1 that the first has a penalty of 18 cycles, while the L1 miss
penalty is only eight cycles). Both L1 and L2 attacks require to be co-located with the
victim process. However, processes running on the same operating system can achieve this
by spawning enough processes for all CPUs and pin them to fixed cores. The challenging
part of targeting L2 is that it is often physically indexed. This means that the cache set in
L2 is determined based on the physical rather than virtual address. Userspace programs are
usually oblivious to this translation. Therefore, it is not straightforward for the attacker to
build a data structure that fills L2 with the correct number of lines per set.

2.4.1 Physical Indexing

Before we discuss how we apply Prime+Probe to L2, we recall the difference between vir-
tually and physically indexed caches. Figure 5 visualises the common choice of indexing,
implemented on our Ivy Bridge processors. L1 is indexed only based on the virtual address
to be accessible without having to wait on the address translation. Since physical memory
is operated on page granularity, the last part of virtual and physical addresses, called the
page offset, is the same. Our memory is byte-addressable, so depending on the size of cache
lines, we have a particular offset into cache lines. L1 makes sure to use not more than the
remaining bits (i.e. the ones not used for the cache line offset) in the page offset. For exam-
ple, on our architecture, we have 64-bit cache lines, and thus six bits offset. Moreover, we
have 4 KiB pages, i.e. 12 bits page offset. There are 64 sets in L1, which use precisely the
remaining six bits of the page offset. However, larger caches often prefer to use physical ad-
dressing because they use more sets than the page offset limitation would allow. Moreover,
using bits of the VPN would lead to cache homonyms, i.e. multiple physical addresses that
are referred to by the same virtual address in different address spaces. Additionally, larger
caches can tolerate waiting on the address translation, as they have slower access times. On
our architecture, L2 has 512 sets and therefore an index of nine bits, six bits are known
from the virtual address, but the remaining three bits require the physical address. In other
words, we know the set of L2 modulo 64 (this corresponds to the L1 set), but eight different
L2 sets map to the same L1 set.

2.4.2 Building a Data Structure for Physically Indexed Caches

In this section, we present a privileged as well as an unprivileged approach to building the
Prime+Probe data structure described in Section 2.3.3 for physically indexed caches. Both
strategies follow the high-level procedure shown in Figure 6. To simplify the subsequent
formulation, we assume a virtually indexed L1 with S1 sets and a physically indexed L2 with
S2 sets and N2 ways. However, the described procedure works for any physically indexed
cache, where the sets can be classified by the bits in the page offset excluding the cache line
offset bits (see Figure 5) instead of the L1 sets.

The main idea is to allocate memory pages, and then detect whether or not the cache
lines covered by those pages should be included in our data structure. If we already have N2

cache lines in an L2 set, we schedule that page to be later freed. This delayed freeing avoids
that we repeatedly obtain the same page during allocation. Otherwise, when we still have
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Figure 5: Comparison of virtual and physical indexing on a common choice of L1 and L2
addressing. While the L1 set is defined from the virtual address, the L2 set requires part of
the physical page number (PPN). Therefore, indexing in L2 has to wait until the memory
management unit (MMU) has translated the virtual page number (VPN) to the PPN.

less than N2 lines, we add all cache lines of the page to a temporary cache data structure
and continue allocating pages until this data structure fills L2. The collision detection and
how we can identify cache lines in the same sets depends on the available privileges:

• A privileged attacker can use the pagemap [53] interface exported by the kernel to
/proc/pid/pagemap to translate virtual to physical addresses. The attacker counts
how many cache lines are in which physical set (which he can read of the physical
address), and uses this to decide whether or not to add a newly allocated page to the
data structure. The cache lines in the same L2 set can directly be identified from their
physical addresses. However, this translation requires the CAP SYS ADMIN capability
since Linux 4.0 (this was added as part of the Rowhammer [60] mitigation).

• The unprivileged version is more challenging to implement. We maintain a linked list
of cache lines that map to the same L1 set, which we know from the virtual address.
However, we do not know the exact L2 set of those cache lines as we miss the bits from
the PPN. Then, we append the cache lines of a newly allocated page tentatively to
their respective L1 set list in our temporary data structure. Next, we use Prime+Probe
to detect collisions in L2. If we have N2+1 cache lines in the same set in L2, they evict
one cache line from this L2 set during prime, and we can measure an access time of L3
during probe. The challenge in practice is to make this detection reliable. Assuming
we identified a collision, we can use it to find the other cache lines in the same set in
L2, by testing which N2 + 1 cache lines in the temporary structure cause the collision.

At this point, we successfully allocated a data structure which fills L2 with exactly S2 sets,
each with N2 cache lines. We can build the data structure of Section 2.3.3 in the same way
as for L1. Note that although we can identify which cache lines map to the same L2 set,
we only know the specific L1 set. It depends on the application whether or not this is a
disadvantage. For example, one attacker against Argon2 in Section 2.5.5 uses every 16th
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Figure 6: Overview of the cache structure building process for physically indexed caches.

set in the data structure for Prime+Probe, e.g. T = {7, 23, . . . , 503}. It does not affect the
observation that we do not know the specific L2 sets, because the constructed data structure
contains a permutation of the mentioned physical sets in T as the sets are accurate modulo
64.

2.5 Cache Side-Channel Applications

We first start by explaining the data post-processing steps we make to improve the timing
side-channel data and continue with the artificial example of detecting a single cache line
read in a controlled environment. After that, we mount a Prime+Probe attack against AES-
CBC encryption of OpenSSL-0.9.8 and show that we can recover the upper half of any key
byte by filtering the key-independent cache footprint. Since the difference between the cache
set that was accessed due to the key byte and the others is small, we could no longer leak this
information in a more complex example which used two processes and inter-process com-
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(a) Without trimming (b) With trimming

Figure 7: Comparison of two plots of the same cache access time measurements with and
without trimming. We see that the high variance, e.g. of the cache sets 13, 15 and 57, is
due to outliers which are part of the slowest 5% of all measurements.

munication. Furthermore, we provide an initial analysis of the vulnerability of OpenSSL’s
key schedule as well as Argon2d to cache side-channels. We investigate the granularity of
cache observations and provide pointers for further research on novel applications of cache
attacks on those targets.

2.5.1 Data Visualisation and Post-Processing

Generally, we often display the cache set on the x-axis and the (normalised) cycle access
time on the y-axis. We perform multiple samples of the same measurement to cope with
noise. For each of them, we display the mean (as a triangle) and the standard deviation
(as a bar). Furthermore, we often use two post-processing steps to reveal the slower cache
access time: trimming and normalisation.

For trimming, we observe that outliers usually only increase the measurement. For
example, interrupts, port contention or branch mispredictions delay the timed operation.
Therefore, the idea of trimming is to remove the slowest measurements because they are
most likely outliers and not part of the behaviour that we want to measure. Moreover, the
normal mean and standard deviation are both sensitive to high outliers. Figure 7 shows
that trimming stabilises the observations drastically: it reduces the standard deviation, for
example for set 13, from over 60 cycles to almost zero. We state the interval of used data
in the bottom right corner: e.g. in Figure 7b, we filter the top 5% of the data when it is
ordered by increasing number of cycles.

Figure 10 shows the value of normalisation on the case of a single AES library call. The
characteristic pattern in Figure 10a is due to all cache evictions by the library code. This
pattern mainly includes ‘normal’ behaviour which is independent of the key. To focus on
key-dependent differences, we can normalise the data by subtracting the mean values of this
expected pattern. Section 2.5.3 gives more information on this specific AES scenario.

2.5.2 Single Cache Line Eviction

In this section, we present a straightforward proof of concept of our cache side-channel
implementation in CacheSC on an artificial example. We perform a Prime+Probe attack
using the CacheSC library and its data structure (see Section 2.3). Between priming and
probing, we access a single memory location, which evicts one cache line from some cache
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(a) Combined access time measurement for all
cache lines in one set.

(b) Sum of individual access time measurements
of all cache lines for each set.

Figure 8: Normalised cache access time measurements with a single eviction in cache set 41.

set in L1. Figure 8a shows that the measurements identify this eviction: the mean access
time of set 41 is six cycles slower on average than the other set timings. We observe
that only the measurement of the targeted cache set has a variance of four. In fact, from
investigating the raw timings, we see that in approximately half of the cases accessing the
targeted set is only four cycles slower than accessing L1; in the other cases, it is the expected
difference of eight cycles5. It is difficult to pinpoint the source of this behaviour since the
processor architecture is not fully transparent, and the behaviour does not occur consistently.
Further research could consider the performance monitoring counters (described in the Intel
developers manual volume 3B [31] and an official online reference [56]) to obtain more
information on the processor’s operations. It would be especially interesting to investigate
the difference between a case where no variance occurs and one where it is four cycles.

2.5.3 AES-CBC in OpenSSL

In this section, we start by briefly recalling AES encryption based on T-tables. Since those
tables are stored in memory, and the table lookups depend on the encrypted plaintext as
well as the key, they are vulnerable to cache side-channel attacks. We show a chosen-
plaintext attack, similar to the one-round attack from Osvik et al. [51], to recover half
of any key byte of the AES-CBC encryption in OpenSSL-0.9.8. Note that [51] performed
the Evict+Time attack, while we apply the Prime+Probe version. Before we present the
measurement results, we discuss some practical challenges that we have to overcome to
perform a successful attack. Moreover, we analyse the theoretical and practical accuracy of
this attack.

Notation

To simplify the following explanations, we introduce some notations and definitions:

• [α) := {0, 1, . . . α− 1} for any α ∈ N.

• B = {0, 1}8 denotes the set of bytes.

• For some matrix M ∈ An×m over a set A, let Mi,j ∈ A denote the element in row i′ and
column j′ and M:,j′ ∈ An denotes the j′-th column, where i′ = i mod n, j′ = j mod m.

5We describe the cache access times of our test laptop in Table 1
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Therefore, all indices are always considered to be modulo the respective dimension of
the matrix.

• For some bitstring q = qk−1||qk−2|| . . . ||q0 of k bits qi ∈ {0, 1}, i ∈ [k), we define the
substring q[b,a] = qb||qb−1|| . . . ||qa for 0 ≤ a ≤ b < k.

AES Encryption with T-Tables

In practice, AES encryption is often implemented with lookup tables to increase performance,
although it could be performed solely with logic and algebraic operations. Daemen and
Rijmen already showed in the AES proposal of 1999 [35] how to combine the SubBytes,
ShiftRows and MixColumns transformations into four tables Te0, Te1, Te2, and Te3. Each of
those so called T-tables contains 256 four byte entries. The last round is special as it omits
the MixColumns transformation. OpenSSL uses yet another table Te4 for the final round,
where all 16 lookups are performed in Te4.

We now briefly describe the 10-round AES-CBC encryption of a single 128-bit plaintext
block P = p0||p1|| . . . p15 with a 128-bit key k = k0||k1|| . . . ||k15, for the bytes pi, kj ∈ B
for i, j ∈ [16). There is a key scheduling algorithm, which we discuss in more detail in
Section 2.5.4, that generates key matrices K(r) ∈ B4×4, r ∈ [11) for every round plus one
additional key which is XORed to the output of the last round. Below, we use A(r) ∈ B4×4

to denote the input to the T-tables in round r ∈ [10), i.e. A(r) stores the encryption state

after the key addition. A(0) is initialised with A
(0)
i,j = pl⊕ kl for l = i+ 4j and i, j ∈ [4). We

start with the first 9 rounds, which are all performing the same operations. The T-tables
are used as follows to transform A(r) to A(r+1) (the input of the next round r + 1):

A
(r+1)
:,j = Te0[A

(r)
0,j ]⊕ Te1[A

(r)
1,j+1]⊕ Te2[A

(r)
2,j+2]⊕ Te3[A

(r)
3,j+3]⊕K(r+1)

:,j

In the last round, the final output block c0||c1|| . . . ||c15 for ci ∈ B, i ∈ [16) is produced as
follows, for C ∈ B4×4 with Ci,j = ci+4j and i, j ∈ [4):

C:,j =
(

Te4[A
(9)
0,j ]0,Te4[A

(9)
1,j+1]1,Te4[A

(9)
2,j+2]2,Te4[A

(9)
3,j+3]3

)T
⊕K(10)

:,j

Note that Te4[Ai,j ]t ∈ B for any i, j, t ∈ [4) is the t-th component of the vector Te4[Ai,j ] ∈ B4.

Chosen-Plaintext Attack

In this section, we explain how we can recover half of any byte of the key by making many
observations of the encryption of maliciously chosen plaintexts with an unknown key. Since
we control the input of the cipher, we fix the IV without loss of generality to zero for
all encryptions. We could simply remove the effect of a non-zero IV because it is public
knowledge.

In the first round of AES, as we discussed in the previous section, we have A
(0)
i,j = pl⊕ kl

for l = i+ 4j. Therefore, the first 16 table accesses directly depend on the key bytes kl and
the plaintext bytes pl as follows:

Tet[pl ⊕ kl], for l = t+ 4s, and t, s ∈ [4)

Since we consider T-table entries of four bytes, the table lookups access the following memory
locations for some t, s ∈ [4):

τt + 4 · (pl ⊕ kl)
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where τt is the base pointer of table Tet. Figure 1 showed that q[11,6) determines the cache
set of an address q. We deduce that (pl⊕ kl)[7,4], the leftmost four bits of the byte (pl⊕ kl),
added to the cache set offset of the base address τt define to which cache set the lookups
map:

(τt + 4 · (pl ⊕ kl))[11,6] = (τt)[11,6] + (4 · (pl ⊕ kl))[11,6]
= (τt)[11,6] + (pl ⊕ kl)[9,4]
= (τt)[11,6] + (pl ⊕ kl)[7,4]

Consequently, when we know the plaintext byte pl, and we can leak the accessed cache set,
we can compute (kl)[7:4], i.e. the leftmost four bits of the key byte kl.

The simplest scenario to exploit the above key leakages in practice is to target only
one key byte at a time. Because when we measure multiple bytes at once, we observe the
eviction of the same number of cache lines, but we do not know which cache set maps to
which key byte. Therefore, to focus on kl, we fix pl over all measurements, while we choose
the other plaintext bytes uniformly at random. We now argue that all table accesses, except
Tet[pl⊕ kl], are uniformly distributed. First, we observe that in the first round Tet[pl′ ⊕ kl′ ]
for l′ 6= l is a uniformly random access since pl′ is random and therefore also the result
of the XOR. It remains to show that all accesses in the subsequent rounds are random as
well. For this purpose, we argue in the unoptimised (but of course equivalent) version of
AES, that the state after round one is random. In the first step, the invertible per-byte
transformation SubBytes is applied to the plaintext (which is the initial state). It trivially
preserves the uniform distribution of the all bytes, except for the fixed one, which is just
renamed. The following ShiftRows operation only reorders bytes in the block. Thus, it
moves the fixed byte to a different location, but otherwise, ShiftRows preserves the uniform
distribution. Next, MixColumn updates each byte with a combination of the elements in its
column (the bytes are organised in a 4×4 matrix). Therefore, also the fixed byte is combined
with three random ones and thus results in a uniformly random byte. After this step, all
bytes are uniformly random. XORing this result with the static round key still produces a
block of uniformly random bytes. Therefore, all table accesses of the subsequent rounds are
random as they are computed based on a random state. We have thus shown that only the
lookup Tet[pl⊕kl] is fixed. Consequently, only the cache set (τt)[11,6] +(pl⊕kl)[7,4] is always
evicted and, therefore, has a slower time measurement than the other sets when averaged
over enough samples.

Osvik et al. showed in [51] how the presented chosen-plaintext attack can be extended
to work in an asynchronous scenario, where the attacker does not control the encryption
algorithm nor knows the plaintexts. He can continuously run Prime+Probe and detect the
start of the encryption by monitoring the cache usage. Furthermore, he can use first-order
statistics about the plaintexts (e.g. the letter frequency in English texts) and correlate them
with guesses for the key bytes.

There are multiple countermeasures against the described attacks: replacing the memory
accesses by logical operations, use data oblivious access pattern or disable cache sharing to
only name a few. However, they often have severe performance penalties and are seldomly
implemented in practice for this reason. A viable countermeasure is the use of hardware
implementations, in case they are available.
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Statistical Analysis of the Chosen-Plaintext Attack Advantage

We continue by analysing how many cycles the access time of a cache set is slower when
it has a fixed access in the first round compared to the other cache sets. This influences,
together with the noise, how many measurements we need to identify the targeted cache set
and consequently, how practical this attack is. The 10-round AES-CBC encryption of one
block has a total of 160 table lookups because every round performs 16 lookups. We assume
the slightly simplified L1 cache layout of the T-tables shown in Figure 9: every table has 256
entries of four bytes; thus, a cache line contains 16 entries and a table covers 16 different
cache sets. We assume that the T-tables are successive in memory, which is reasonable as
the tables are often hardcoded. Under this assumption, Te0 and Te4 are the only tables that
map to the same cache sets, as shown in Figure 9.

We hereafter use s ∈ [S) to refer to the cache set with number s, where we number all
cache sets from 0 to S − 16, and we refer to s as a cache set for simplicity. We introduce
the following three functions to simplify the subsequent calculations:

• Cover(Te) ⊆ [S) is the subset of the cache sets covered by the table Te. Note that we
have |Cover(Te)| = 16 for all T-tables of OpenSSL.

• Tab(s) = {Te | s ∈ Cover(Te)} is the set of tables that map to cache set s ∈ [S). We
note that |Tab(s)| ∈ {1, 2} for our assumed table alignment (shown Figure 9).

• Lookups(Te) is the number of lookups in Te during the complete encryption.

Moreover, we introduce the following random variables:

• Let Fs,Te∗ denote the event that table Te∗ has a fixed access to cache set s ∈ [S).
Note that we should have s ∈ Cover(Te∗), otherwise Te∗ could not access s, and this
random variable would not make sense.

• Let Xs,Te be the indicator variable that is one if and only if a lookup in table Te evicts
a cache line in s ∈ [S) during the encryption.

• Let Ys be the random variable counting the number of evicted lines in s ∈ [S). We
have:

Ys =
∑

Te∈Tab(s)

Xs,Te

We proceed to calculate the expected number of accessed cache lines in some cache set
s ∈ [S). For this purpose, we first calculate the probability Pr[Xs,Te = 1 | Fs′,Te∗ ] of an
eviction by table Te in s conditioned on a fixed access to some cache set s′ ∈ [S) by table
Te∗. There are two trivial cases: first, when Te has no entries in s, it does not evict anything,
and second, when Te has a fixed access to s, we always have Xs,Te = 1. For the other cases,
we observe that a cache line of Te is brought to L1 as soon as at least one element in this line
was accessed. Therefore, in case of no fixed accesses, we have Xs,Te = 0 when all lookups

mapped to sets in Cover(Te) \ {s}. This happens with the probability (15/16)
Lookups(Te)

when s ∈ Cover(Te) because all table lookups have to map to the 15 cache sets other than
s that store data of Te. The fixed access in our scenario slightly changes this probability
when it is to another cache set of the same table: in that case, we have one lookup less that
should not map to s. The evictions of different tables in the same cache set are independent
under the assumption of a perfect LRU replacement policy, as long as there are not more
tables mapping to s than the associativity N of the cache, i.e. |Tab(s)| ≤ N . Therefore,

6Recall from Figure 3 that we use S to denote the total number of cache sets.
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the variables Xs,Te and Xs,Te∗ are independent for different tables, and a fixed access in
Te∗ 6= Te has no influence on Xs,Te. In summary, we have the following probability:

Pr[Xs,Te = 1 | Fs′,Te∗ ] =


0 if s /∈ Cover(Te)

1−
(
15
16

)Lookups(Te)
if s ∈ Cover(Te) ∧ Te 6= Te∗

1−
(
15
16

)Lookups(Te)−1
if s ∈ Cover(Te) ∧ Te = Te∗ ∧ s 6= s′

1 if s ∈ Cover(Te) ∧ Te = Te∗ ∧ s = s′

Note that the case distinction is complete, i.e. it covers all possible scenarios. For the sake
of brevity, we introduce the following variables:

ΓTe = 1−
(

15

16

)Lookups(Te)

, Γ̂Te = 1−
(

15

16

)Lookups(Te)−1

Since Xs,Te is an indicator variable, we have Exp[Xs,Te | Fs,Te∗ ] = Pr[Xs,Te = 1 | Fs,Te∗ ].
Therefore, we get by the linearity of the expected value:

Exp[Ys | Fs,Te∗ ] =
∑

Te∈Tab(s)

Exp[Xs,Te | Fs,Te∗ ] = 1 +
∑

Te∈Tab(s)
Te 6=Te∗

ΓTe

Note that one cache line is always brought to L1 due to the fixed lookup in Te∗. Moreover,
note that from Fs,Te∗ it follows that at least s ∈ Cover(Te∗). When no table maps to s, i.e.
Tab(s) = ∅, we of course have Ys = 0, but in our case ∀s ∈ [S). |Tab(s)| > 0.

For all other cache sets s′ ∈ [S) \ {s}, we have the following expected value:

Exp[Ys | Fs′,Te∗ ] =


∑

Te∈Tab(s) ΓTe if s /∈ Cover(Te∗)

Γ̂Te∗ +
∑

Te∈Tab(s)
Te 6=Te∗

ΓTe otherwise

Because if s ∈ Cover(Te∗), then we have the expected value Exp[Xs,Te∗ | Fs′,Te∗ ] = Γ̂Te∗ since
this corresponds to the case s ∈ Cover(Te) ∧ Te = Te∗ ∧ s 6= s′.

Therefore, we can now calculate the expected difference between a targeted cache set t
and another cache set t′ 6= t with no fixed access:

Exp[Yt | Ft,Te∗ ]− Exp[Yt′ | Ft,Te∗ ] =

{
1− ΓTe∗ if t′ /∈ Cover(Te∗)

1− Γ̂Te∗ otherwise

For the concrete case of OpenSSL, the fixed access is in Tej for j ∈ [4), since OpenSSL
only uses those four tables in the first round of encryption. All of them are used in nine
rounds with four lookups each, so we have Lookups(Tej) = 36. Thus, for a fixed access of

Tej to the cache set t ∈ [S), we obtain a distinguishing advantage of 1−ΓTej = (15/16)
36 ≈

0.098 over the 48 cache sets [S) \ Cover(Tej). Moreover, compared to the cache sets in

Cover(Tej) \ {t}, we have an advantage of 1 − Γ̂Tej = (15/16)
35 ≈ 0.104. Because each

cache line eviction in L1 causes eight additional load cycles (see Table 1), we can expect the
targeted cache set t to be around 0.8 cycles slower than all other cache sets.

We make two observations on the above calculations: first, we assumed a perfect LRU
replacement policy, however, Section 2.3.5 mentions that real L1 caches only approximate the
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Figure 9: This shows the simplified L1 cache layout of consecutive AES T-tables Te0 to Te4.
We use the notation T [a:b) as a shorthand for the entries T [a], T [a+1], . . . , T [b−1]. 16 entries
fill one cache line and one table covers 16 cache sets. Note that we simplified this figure in
two ways: first, we assume that all tables are allocated consecutively, which is plausible for
OpenSSL-0.9.8 as they are hardcoded. Second, the cache lines are placed in an any of the
N slots (this depends on the state of the cache replacement policy implementation).

LRU policy. Nevertheless, also the Tree-PLRU policy of our Dell Latitude E6430 guarantees
that the most recently used cache line is never evicted. Thus, the above calculations are
perfectly justified for OpenSSL on our test laptop, since two successively accessed cache
lines never evict each other. Second, the normalisation explained in Section 2.5.1 performs
the subtraction Exp[Ys | Fs′,Te∗ ] − Exp[Ys | Fs′′,Te⊥ ] for s, s′, s′′ ∈ [S) and s 6= s′′ and a
non-existent table Te⊥. Because with this slight abuse of notation, Fs′′,Te⊥ corresponds to
the event of no fixed access by any table, which is what the baseline measurements do. Note
that without this subtraction, the 16 cache sets in which up to two cache lines can be evicted
would have a higher access time than the ones to which only a single table maps.

In summary, the intuition why a targeted cache set is only 0.8 cycles slower instead of
the eight cycles difference between an L1 and L2 access is the following: There are 16 table
entries in the same cache line, and this line is cached as soon as one of these entries is
accessed. The only difference between a cache set with a fixed access to one without is that
the latter does not access (and thus evict) the cache line in 10% of the cases. Therefore, we
only have a tenth of the distinguishing advantage between L1 and L2.
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(a) Without normalisation (b) With normalisation

Figure 10: Comparison of the same cache access time measurements of ten rounds of AES-
CBC encryption. The characteristic pattern is due to all cache evictions caused by this
library call, independently of the key byte. They are stable over many measurements and
can thus be removed by subtracting this ‘normal’ behaviour from the measurements.

Practical Challenges when Attacking OpenSSL

The first very fundamental challenge is to find the executed AES-CBC code for a library call.
While this seems to be a simple task at first glance, there are multiple complications: First,
OpenSSL is an extensive library and tracing API calls to the implementation needs many
steps, involving functions that are only generated at compile time from macros. Second,
which code is executed also depends on runtime decisions: the library checks at runtime
whether the AES instruction set AES-NI is supported. As stated in Intel’s introduction [21],
this hardware implementation of AES mitigates cache side-channel attacks ‘by running in
data-independent time and not using tables’. For testing purposes, we can deactivate AES-
NI for OpenSSL by either using the environment variable OPENSSL ia32cap, removing the
aesni intel kernel module or using BIOS options (when available). However, we recom-
mend tracing a library call with a debugger to make sure that AES-NI is not used. Third,
there are multiple implementations of the same encryption: on the one hand, the executed
code depends on engines7, which can extend an algorithm or implement an alternative one.
On the other hand, there are multiple implementations (e.g. different optimisations) of the
same function and compiler flags decide which of those is used.

The second challenge is the cache footprint of all key-independent memory accesses of
the library call. To cope with this, we use the normalisation that we already mentioned in
Section 2.5.1, shown in Figure 10. We obtain key-independent baseline measurements by
averaging the access cycle counts over many encryptions with random keys. It is vital to
have very low noise measurements because otherwise, the cache footprint of a library call
would not be stable across samples. This might increase the variance to a point where we
can no longer leak the key-dependent cache accesses.

Lastly, the address space layout randomisation causes the OpenSSL library to be loaded
to different addresses on each execution. Since it depends on the table offset to which cache
set an entry maps, we need to know the table’s address to leak information about the key.
For simplicity, we patched the library to export this address. However, it is possible to
detect this offset: Figure 11 shows the result of targeting all four bytes that have a lookup
in Te0 in the first round at the same time. When we combine enough of those measurements,
all cache sets of the table stand out and we learn the offset.

7Starting from OpenSSL version 3.0.0, providers will replace engines.
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Figure 11: Detecting the Te0 table offset by targeting all four lookups in round one and
performing multiple measurements.

(a) Average cycle count per cache set. We see
that accessing the target set 14 is significantly
slower than the other sets’ timing.

(b) Percentage of measurements where the tar-
geted set is among the X slowest measurements.

Figure 12: Cache-side channel attack on AES-CBC of OpenSSL-0.9.8.

Measurement Results

After we have introduced the chosen-plaintext attack on AES-CBC encryption using T-
tables, we present the results of this attack implemented with our cache side-channel library
CacheSC.

Figure 12a shows the chosen-plaintext attack targeting set 14 and averaged over 10000
samples. Together with the table offset, which was conveniently aligned to the L1 cache
in this execution, the set directly leaks the upper half of the targeted key byte 0xED, i.e.
0xE = 14. We see that the mean access cycle measurement of the targeted set is nearly one
cycle slower, matching the calculation of Section 2.5.3.

Since the expected difference of 0.8 cycles is quite a small, we evaluate the accuracy of
this side-channel in the presence of noise. Figure 12b shows for which percentage of mea-
surements the targeted set was among the X slowest measurements, where X = 1, 2, . . . , 10.
We see that for 76.5% of all measurements, the targeted set is the slowest one when we
average over 10000 samples for each measurement. We conclude that the attack is therefore
very accurate.

2.5.4 OpenSSL Key Scheduling

In this section, we briefly evaluate the cache side-channel leakage of OpenSSL’s implemen-
tation of the AES key scheduling algorithm. We first provide a theoretical abstraction of
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the key expansion used in OpenSSL, before we show that some AES keys are weaker than
others in the sense that leaking their memory accesses reduces the space of possible keys
significantly.

Key Scheduling Algorithm

The key scheduling algorithm in OpenSSL is implemented with a single T-table Te4. It makes
40 lookups in Te4 to expand the key for 10-round AES-CBC encryption. We describe the
expansion of a 128-bit user-supplied key k = k0||k1|| . . . ||k15 for key bytes ki ∈ B, i ∈ [16)8.
Let K(i) ∈ B4×4, i ∈ [11) be the key matrix. The first ten rounds of encryption start with
XORing the key matrix to the current state of the encryption. The last key K(10) is XORed
to the output of the tenth round to produce the final ciphertext. For the first round of the

key schedule, K(0) is initialised with k as follows: K
(0)
i,j = ki+4j for i, j ∈ [4). Each round

r ∈ [10) computes the matrix K(r+1) recursively:

K
(r+1)
:,0 =

(
Te4[K

(r)
1,3 ])0, (Te4[K

(r)
2,3 ])1, (Te4[K

(r)
3,3 ])2, (Te4[K

(r)
0,3 ])3

)T
⊕ rconr

K
(r+1)
:,j = K

(r)
:,j ⊕K

(r+1)
:,j−1 , for j = 1, 2, 3

where rconr ∈ B4 is the constant for round r defined in the AES proposal [35]. Also note

that Te4[K
(r)
i,j ]t ∈ B for any i, j, t ∈ [4) is the t-th component of the vector Te4[K

(r)
i,j ] ∈ B4.

Weak AES Keys

In this section, we first make a statistical analysis to show that some AES keys are weaker
than others in terms of their cache footprint. We then continue to analyse how this reduces
the search space of those weak keys.

Before we start, we first highlight an essential difference compared to the encryption
attack. For the key scheduling algorithm, we do not have a second parameter, corresponding
to the plaintext of the encryption, that we can manipulate. Therefore, we cannot focus on
single bytes of the key while randomising the impact of the other bytes: we always observe
the same cache footprint for the same key.

We reuse the notation from Section 2.5.3 to analyse the probability that a table Te
covering k = |Cover(Te)| sets and having n = |Lookups(Te)| lookups does not evict cache
lines in all k cache sets. We model this problem as throwing n distinguishable balls uniformly
at random into k bins. Note that this makes the idealised assumption that the AES keys
chosen by the user are distributed uniformly at random. Let Cn,k be the random variable
that counts the number of empty bins. Thus, we want to compute Pr[Cn,k > 0], the
probability that not all bins are occupied. We calculate this using the Stirling partition
number S(n, k) 9, which counts the number of ways in which we can partition a set of
n elements into k pairwise disjoint and non-empty sets. Given such a partition of the n
balls, we have k! different mappings of those k subsets to our k bins. Since each subset
is non-empty, every bin has at least one ball. Finally, we know that the total number of

8The notation used in this section was introduced in Section 2.5.3.
9 The Stirling partition number, also known as the Stirling number of the second kind, is defined as

follows:

S(n, k) =
1

k!

k∑
i=0

(−1)i
(k
i

)
(k − i)n
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Cache Evicitons (k − i) Weak Keys Keyspace

15 75.7% 77.2%
14 34.8% 58.6%
13 9.1% 43.6%
12 1.3% 31.6%
11 0.11% 22.3%
10 0.005% 15.3%

Table 2: Summary of how many weak keys exist that evict at most the given number of
sets during key scheduling and thereby reduce the keyspace. The percentages are relative
to all 2128 possible keys. Note that for 0.11% of the keys, we reduce the keyspace by 22.3%.
Although this might seem to be much, it actually corresponds to an approximate security
loss of two bits, as 2128/2126 = 25%.

possible assignments of n balls to k bins is kn, where each ball chooses one of the k bins.
In conclusion, we obtain the following probability for Pr[Cn,k > 0] = 1 − Pr[Cn,k = 0] by
dividing the number of cases with k non-empty bins by the total number of cases:

Pr[Cn,k > 0] = 1− S(n, k) · k!

kn

For the 10-round OpenSSL key scheduling algorithm, we have n = 40 lookups in Te4 and k =
|Cover(Te4)| = 16. Therefore, we get Pr[C40,16 > 0] ≈ 0.76. This means that approximately
76% of the keys do not fetch all 16 sets of table Te4 to L1. In the following, we call those
keys ‘weak’.

We continue by showing how the search space of such weak keys is trivially reduced only
due to the table accesses in the first round. Further research could investigate if the relations
of the other nine rounds can be used to reduce the keyspace even more. Section 2.5.4 shows
that the initial table lookups directly depend on the last four bytes of the user-supplied key.
The table accesses Te4[k12+i] for i ∈ [4) leak the upper four bits of k12+i because the table
entries are four bytes and thus the accessed memory location is τ4 +4 ·k12+i, where τ4 is the
base pointer of table Te4. As we show in detail in Section 2.5.3, the cache set to which this
address maps is (τ4)[11,6]+(k12+i)[7,4]. Thus the accessed cache sets leak (k12+i)[7,4]. For the
weak keys, we directly follow that there are only 15 possible values for k12+i because there
is at least one cache line that was never accessed. Therefore, we can reduce the keyspace to
154 · 2112 possible keys, which corresponds to 77.2% of the original 2128 possible keys.

We can generalise this analysis for keys that access at most k − i cache sets. We derive
the probability that at least i bins are empty by summing all cases where the n balls fill
exactly k − i bins:

Pr[Cn,k > i] = 1−
∑i

j=0 S(n, k − i)
(

k
k−i
)
(k − i)!

kn

Because there are
(

k
k−i
)

ways to choose k − i bins (the rest of the formula follows the same
reasoning as before). Table 2 summarises the results for weak keys.

Conclusion

The analysed implementation of the AES key schedule is present in both OpenSSL-0.9.8 as
well as in the latest stable version OpenSSL-1.1.1f. However, the practical impact of the
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presented attack is limited for three reasons. First, this vulnerable key scheduling imple-
mentation is probably not often used in practice due to the different AES implementations
in OpenSSL and especially the wide-spread hardware support for AES-NI. Second, the ad-
versary needs precise observations of many key scheduling executions for the same key to
obtain a precise cache footprint, which requires him to run an unprivileged process on the
same core. Third, the reduced keyspace for the provided examples of reasonably likely weak
keys is still of the order of 2126, which is still far from being computable10.

Nevertheless, we encourage further research to look into the relations for the last nine
rounds, because we have only leveraged the implications of the cache observations on the
first round of the key scheduling algorithm. Since the lookups of later rounds depend on
the key bytes as well, it is possible that the keyspace can be further reduced.

2.5.5 Argon2

Argon2 [11] is a memory-hard password hash function, designed by Biryukov, Dinu, and
Khovratovich, that won the Password Hashing Competition (PHC) in July 2015 [70]. This
new hash function aims to protect low-entropy secrets, such as passwords, from dictionary
attacks. The threat of password cracking increased over the last years, as the computation
of hash functions got faster due to Moore’s law and dedicated hardware. Memory-hard
functions aim to mitigate this problem by requiring a substantial amount of memory and
having significantly higher computation costs if less memory is available. Argon2 specifies
two variants, Argon2d and Argon2i:

• ‘Argon2d is faster and uses data-depending memory access, which makes it suitable for
cryptocurrencies and applications with no threats from side-channel timing attacks’
[11].

• ‘Argon2i uses data-independent memory access, which is preferred for password hashing
and password-based key derivation’ [11].

The above definitions already indicate that Argon2d does not entirely resist side-channel
attacks. In this section, we take a first look at the granularity of cache timing observations
and provide starting points for further research on such timing attacks. Investigating the
practicality of cache side-channels is relevant, as we found real-world usages of Argon2d for
password hashing. For example, the open-source [61] password manager KeePass [37] uses
Argon2d in its latest version KeePass 2.45 from May 5th, 2020. Without understanding
Argon2d’s susceptibility to side-channel attacks, we cannot evaluate the security risk for
such services.

Background

Before we discuss the cache side-channel granularity, we briefly recall the parts of Argon2’s
specification that are relevant for the subsequent sections. The high-level overview in this
section is intertwined with Figure 13, which is Biryukov et al.’s visualisation of a single-pass
through memory by Argon2 [11].

Argon2 follows the extract-then-expand paradigm [43] by first using a plain hash function
H11 to extract entropy from the message, nonce, and other parameters. Overall, Argon2 uses

10On April 16th 2020, the bitcoin network computed approximately 118 · 1018 hashes per second [12],
which corresponds to 266.7 operations per second or 291.6 per year.

11Argon2 uses Blake2b for this hash function H.
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p lanes

4 slices

message

nonce

parameters

H

B[0][0]

B[p− 1][0]

HHH

Tag

Figure 13: This is Figure 2 from the Argon2 paper [11]. It shows a single pass of Argon2
over the m 1024-byte memory blocks organised in p lanes and l = 4 slices. The intersection

of lanes and slices is called segment, and contains
⌊

m
p·l

⌋
blocks.

m 1024-byte blocks of memory, organised in a matrix B of p rows and q = bm/pc columns.
The rows also referred to as lanes, correspond to the tunable number of threads. Argon2
uses the previously extracted information to initialise the first two columns of B in memory.
Argon2 then makes t passes over memory, where it calculates Bi,j for i ∈ [p), j ∈ [q) using
a compression function G on Bi,j−1 and another referenced block Bi′,j′ . Argon2d calculates
the indices i′, j′ based on Bi,j−1, which makes it memory-dependant. In contrast, Argon2i
uses the 2-round compression function G2 in counter mode on inputs including the position
– slice, lane, and pass number but never data – of the current block to select the referenced
block. This referencing follows a set of rules that uses the further partition of B into l slices
of q/l columns (see Figure 13). A segment is the intersection between slices and lanes and
contains q/l blocks that are all processed by the same thread. Since Argon2 computes those
segments in parallel, a block cannot reference any block from another segment in the same
slice. However, it can reference other blocks in the same segment (except the previous block,
as Bi,j−1 is already the first argument of G) and all blocks in segments of different slices, if
they were already initialised. Finally, after t iterations over memory, Argon2 computes the
output tag by the iterative application of H on the XOR of the blocks in the last column
B:,q−1.

We consider in the rest of this section the following parameters, used in the reference
implementation of Argon2 [7]:

• p = 1, i.e. using a single thread and thus no parallelism.

• m = 216, i.e. a total memory usage of 216 ∗ 1024 B= 64 MiB.

• l = 4 slices.

• t = 2, corresponding to initialising all blocks and then performing another pass over
all of them.
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Cache Side-Channel Granularity

In this section, we evaluate the granularity of cache side-channel observations on Argon2d.
We consider two processes, an attacker and a victim, running on the same CPU core.
The attacker process A asynchronously performs many iterations of Prime+Probe, while
the victim process V concurrently calculates an Argon2 hash. We define the observation
granularity as the number of blocks that V accesses before the next Prime+Probe of A.
Figure 14 visualises how this scenario depends on the scheduler:

1. Both processes are ready to execute. Ideally, A is already running before V to measure
the first Argon2 block accesses.

2. The scheduler allows A to execute, and A fills the caches with its data by performing
CAP+P iterations of Prime+Probe.

3. The scheduler preempts A and runs V instead. V accesses CVblocks blocks during Ar-
gon2’s internal passes through memory. The referenced Argon2 blocks create an access
pattern depending on the current block and therefore ultimately on the hashed pass-
word in Argon2d.

4. The scheduler interrupts V and schedulesA again. A continues to execute Prime+Probe
and can observe the block access pattern of V during the first probe phase.

5. This procedure is repeated from point 2 until V finishes its computation and termi-
nates.

We know from the previous section that Argon2 accesses memory at the granularity of
1024-byte blocks, which corresponds on our Dell Latitude E6430 to 16 cache lines of 64
bytes in 16 different cache sets. Since our L1 is only 32 KiB, V likely replaces the entire L1
with Argon2 blocks. Therefore, we let A perform Prime+Probe on L2. We measure CAP+P

and CVblocks on our test laptop by printing the current timestamp counter for both processes.
For A, we sample the time before prime and after probe, and for V we sample it on each call
to the index alpha function (which is used to calculate the number of possible reference
blocks in the same lane). Table 3 shows the mean and standard deviation for both CAP+P

and CVblocks, and two different attackers. While the first attacker performs Prime+Probe to
fill the entire L2 cache, the second attacker is slightly more sophisticated and only targets
every 16th set, because Argon2’s blocks cover 16 sets. Therefore, when V accesses a block,
it evicts cache lines in all 16 sets covered by that block and thus, observing this eviction in
a single set is sufficient. We see that once V is scheduled, it accesses approximately 6520
blocks before it is dispatched. This number is independent of the attackers Prime+Probe
strategy, as it only depends on how much consecutive run time the process V is granted.
Although the second attacker performs around 17 times more Prime+Probe measurements,
it cannot observe the state of L2 after fewer block accesses of V.

Figure 15 shows the result of performing prime, then computing the complete Argon2 hash
of a random password, before observing the L2 cache state with probe. It seems challenging
to distinguish different passwords on those high-level observations, especially since they have
significant noise.

After we have now established an understanding of the accuracy of cache side-channel
observations, we discuss possible further research directions in the next section.
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Figure 14: Visualisation of the cache side-channel granularity, depending on the scheduling
of an attacker process that performs Prime+Probe in an endless loop, and a victim process
calculating an Argon2 hash.

Ratio of Targeted Sets µCAP+P
σCAP+P

µCVblocks
σCVblocks

µmsrmts

512/512 34.4 2.3 6517.7 1460.9 20.1
32/512 595.6 41.9 6520.9 1445.6 20.1

Table 3: Empirical measurement of CAP+P and CVblocks on a Dell Latitude E6430 for two
attackers: the first performs prime on the entire L2, the second only on every 16th line (as
each block spans 16 lines). For both counts, we give the mean µ and the standard deviation
σ averaged over 100 consecutive hashes. Moreover, we give the average number of useful
Prime+Probe measurements µmsrmts, where an observation is useful if it occurred after V
accessed new blocks.
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(a) not normalised (b) normalised

Figure 15: This figure shows the cache observations of an entire Argon2 hash for the param-
eters described in Section 2.5.5.

Further Research

The results of the previous section suggest that applying Prime+Probe attacks on Argon2d
faces the following problem: our L2 can store a total of 4096 different cache lines, but V
accesses approximately 6520 · 16 lines. There are two main directions that further research
could investigate:

1. Understand the Argon2 block access pattern: how likely can we distinguish the access
patterns of different passwords? How does this distinguishing advantage decrease when
more blocks are accessed? Those questions are similar to the OpenSSL key schedule
analysis in Section 2.5.4, as it depends on the number of collisions that Argon2’s block
accesses cause in the same set of L2, i.e. on the number of Argon2 blocks that evict
other Argon2 blocks instead of the attacker’s data.

2. How can we reduce the number of Argon2 blocks that V accesses while it is scheduled?
We suggest a few possible approaches to achieve this:

2.1. The attacker could use multiple attack processes on the same core to slow down
the victim process. Depending on the scheduler, this could reduce the time
slice that V is running on the CPU, and thus, the number of blocks it accesses.
However, there is probably a minimum time slice that a process is allowed to
run so that the switching overhead does not outweigh the scheduled process’
progress. Therefore, we would need to understand how many Argon2 blocks the
victim can process in that time slice. Note that the second attacker of Table 3
was able to perform hundreds of Prime+Probe measurements, so it can tolerate a
considerable slowdown since we only need one prime before V runs and one probe
directly afterwards to obtain useful measurements.

2.2. In the scenario of privileged attackers, such as an untrusted operating system, the
Programmable Interrupt Controller (PIC) could be used to interrupt the victim
frequently. Similar attacks have been applied to SGX enclaves [27, 66, 67, 49].

2.3. An unprivileged approach to slow down V could try to evict all pages of V from
L3, and ideally, also the TLB12 entries to make V’s memory accesses slower.

12The Translation Lookaside Buffer caches virtual to physical address translations, and thus reduces the
time to access memory.
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2.4. In highly parallelised environments, p � 1 threads can be executed on separate
cores. Since the Argon2 blocks are organised in a matrix with p rows, the number
of different Argon2 blocks used on a single core decreases for a constant m, as
each thread cannot reference the Argon2 blocks in the same slice (column).

Alternatively, we could perform the entire attack on L3. Although this has additional
challenges (shared between cores, complex addressing), it is larger and could provide more
useful access patterns for the same number of Argon2 block accesses than L2.

Assuming one of the previous approaches achieves to distinguish the Argon2 block access
patterns of different passwords, this could be used to thwart the memory-hardness of Argon2.
We can observe the memory access pattern of passwords during a dictionary attack and
possibly avoid substantial computational cost by aborting a hash computation as soon as
the access pattern does not match. Table 3 suggests that even with untampered scheduling,
we have approximately ten Prime+Probe observations for every pass through memory (since
in our test with t = 2, two passes had 20 useful Prime+Probe measurements on average).
In the best case, when we can distinguish two passwords already after the first observation,
which could reduce the computational costs for a password cracker by a factor of 10 · t.
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Chapter 3

Conclusion

It is worth revisiting microarchitectural side-channels, and cache attacks in particular, for
two reasons. First, they often persist in new designs due to their fundamental trade-off
with performance. Second, the results often need to be revised for new software and hard-
ware versions, as they are often tailored to specific versions as a consequence of the neces-
sary empirical approach taken to investigate microarchitectural side-channels. We port the
chosen-plaintext attack of Osvik et al. [51] on OpenSSL’s AES-CBC implementation – one
of the first practical cache side-channel attacks – to contemporary hardware in the presence
of various new optimisations. We explain the appropriate data structure for cache attacks
and the reasoning behind its design. Moreover, we port the Prime+Probe cache attack tech-
nique to physically indexed caches. We contribute the library CacheSC that implements
Prime+Probe on virtually indexed caches, as well as unprivileged or privileged attacks on
physically indexed caches.

Furthermore, we perform an initial review of novel side-channel applications on the AES
key schedule and Argon2d. We show that only using the side-channel information on the
first round of the AES key schedule, we can, for instance, identify 1.7 · 1034 weak keys. We
can detect those keys based on their memory access pattern and reduce the key search space
by three bits. Further research could improve this result by using observations on the other
key scheduling rounds. Finally, we argue that precise cache side-channel observations on
Argon2d could be used for more efficient password cracking, bypassing the parameterisable
number of passes over memory. Given the cache access pattern of a known target password,
an attacker can abort Argon2d as soon as he detects a differing access pattern. We make the
first step towards this goal and analyse the cache side-channel granularity of observations on
Argon2d hashes. We observe on our Intel Ivy Bridge processor that a victim process running
Argon2 accesses approximately 25 times the number of cache lines in L2 between prime and
probe. We argue that this is due to the consecutive time slice that the scheduler allows the
victim to run before rescheduling the attacker process. Therefore, further research could try
to reduce the number of blocks that the victim accesses, e.g. by slowing the process down.
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