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Abstract
Smart locks are an increasingly popular and critical compo-

nent of smart homes due to their convenience and efficiency
compared to traditional locks. In this paper, we conduct an
in-depth analysis of one smart lock product, the Master Lock
Deadbolt D1000. We reverse engineer the Master Lock Vault
Enterprise Android app, analyze their proprietary commu-
nication protocols, and discover several vulnerabilities: (1)
Replay attacks can allow unauthenticated unlocking; (2) For-
mer guests can continue unlocking the lock after their access
should have expired; (3) Malicious users can arbitrarily ex-
tend temporary access and lock other users out; (4) Attackers
can forge audit events and prevent authentic events from being
uploaded to the telemetry servers; (5) Malformed Bluetooth
Low Energy (BLE) messages can result in a Denial of Ser-
vice (DoS) as well as memory leaks and corruptions. We
developed an Android app implementing the communication
protocols in order to demonstrate proof-of-concept exploits
of these attacks. Finally, we propose countermeasures and
discuss their broader implications for the security of smart
locks and similar IoT devices.

1 Introduction

A smart lock allows users to unlock doors using a keypad,
mobile app, or electronic key fob. The global smart lock mar-
ket size was estimated to be $2.8 billion in 2024 [16]. Smart
locks are not just popular, they are also security critical be-
cause they are designed to be integrated into doors as a trusted
component for access control. Thus, attacks on smart locks
have real-world impact on the physical safety of humans.

Smart locks are increasingly common for numerous use
cases including accessing hotel rooms and vacation rentals,
and allowing temporary access for pet sitters, house cleaners,
or maintenance and repair personnel. In a common scenario,
a smart lock owner will grant other users access to unlock the
lock for a limited time period. A study by Mare et al. [13]
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found that smart locks were the second most common “smart”
device found in Airbnb rentals. Hazazi and Shehab conducted
a semi-structured interview study with 29 participants and
found that popular smart lock features are “the ability to re-
motely control the lock”, “keyless entry,” and “the ease of
giving others access” [5].

A typical app-controlled smart lock involves at least three
systems who must communicate with each other to authen-
ticate users and operate the lock: the physical lock itself, a
user’s mobile device, and a remote server controlled by the
manufacturer [20]. Communication between the smart lock
device and the user’s mobile device is straightforward, usually
via either Wi-Fi or Bluetooth Low Energy (BLE). Communi-
cation between the smart lock and the manufacturer’s remote
server is more complex. Some smart locks may include a
built-in Wi-Fi modem so that the device can communicate
directly over the Internet with the remote server. Ho et al. [6]
analyzed one such example from Lockitron (since aquired and
integrated into the myQ platform1). Connecting the lock to
Wi-Fi is relatively computationally expensive for a resource-
constrained device, and requires additional hardware compo-
nents and energy consumption. Moreover, there are security
implications to exposing a smart lock device to the Internet,
such as vulnerabilities enabling remote attacks. An alternative
choice is to design the smart lock so that it communicates only
over BLE and relies on the user’s mobile device to communi-
cate with the manufacturer’s remote server. This architecture
may be referred to as a device-gateway architecture [6] or
mobile-as-a-gateway IoT [22] because the phone serves as an
internet gateway between the lock and the manufacturer’s re-
mote server, while the smart lock only communicates with the
mobile phone via Bluetooth. Smart lock brands that use this
architecture include Level, August, Yale, and Kevo [6, 22].

In this paper, we do an in-depth analysis of a smart lock
product from Master Lock, a popular US manufacturer of
smart locks with a revenue of $860 million in 2022 [17]
that also uses this device-gateway architecture. As shown in

1https://www.myq.com/products/smart-lock



Figure 1: The Master Lock architecture includes the smart lock device, the user’s mobile phone which acts as a gateway, and
remote SDK, telemetry, and API servers operated by Master Lock.

Figure 1, they use three different servers to (1) fetch firmware
updates from the SDK server, (2) upload audit events (such as
when the lock was opened/closed) to the telemetry server, and
(3) a general API server for user registration, authentication,
and the issuance of access profiles. Using these access profiles,
a user can later authenticate to the smart lock and perform
privileged operations such as locking and unlocking.

Several prior works published between 2016 and 2019 [1,6,
7, 9, 21] on the security of smart locks found widespread vul-
nerabilities across many vendors, including August, Dana, and
Kevo. These results showed that security has been neglected
in the early design of smart locks: four products sent pass-
words in plaintext over BLE, five were vulnerable to replay
attacks, and five allowed guests with revoked access to unlock
the door by setting their phone to airplane mode. Compared
to their competitors, Master Lock fared better. In the analysis
of Rose and Ramsey [1]—which analyzed 16 smart locks—
Master Lock was one of the four locks for which they found
no vulnerabilities. Later, Knight, Lord, and Arief [9] identi-
fied insufficiently secured API endpoints for Master Lock that
allowed users to bypass access hour restrictions and open the
lock after revocation. In their analysis, they found that the
Bluetooth communication between the lock and phone was
encrypted, and were not able to analyze it further. We give
more details on these and other related works in Section 10.

Our Contributions. In the past six years, Master Lock ap-
pears to have patched the vulnerabilities reported in prior
work and secured their API endpoints. Nevertheless, we carry
out a more in-depth analysis of the mobile phone app, the
lock’s use of encryption, and the custom Bluetooth communi-
cation protocol, and demonstrate several novel vulnerabilities
exploiting design flaws.

We give three attacks that allow an adversary in physical
proximity of the lock to open it, forge entries in the audit log,
and prevent the lock owner from operating the lock. Two other
attacks allow a temporary guest to open the lock even after

their access expired or was revoked. We describe our attacks
and place them in the context of a threat model in Section 2,
and give full technical details Section 6. We validated our
findings by executing proof-of-concept attacks described in
Section 7 with a custom Android app implementing the BLE
protocols to communicate with the lock. To carry out our anal-
ysis, we had to overcome custom obfuscation methods and
other obstacles added after the prior work described above
using techniques described further in Section 4. The result-
ing reconstructed protocols are in Section 5. We disclosed
our attacks to Master Lock in March 2025, and Master Lock
plans to publish mitigations in June 2025. We describe these
mitigations and tradeoffs in detail in Section 8.

Our work illustrates the evolving security landscape for
smart lock security. We demonstrate attacks against smart
locks that are just as strong as previous attacks demonstrated
in 2016, but require increased sophistication on the part of
the attacker. Rather than generic attack techniques that apply
across many smart locks, a deeper analysis of the protocol is
necessary to find more subtle flaws in the design.

2 Threat Models and Attack Overview

In this paper, we analyze the Master Lock Bluetooth Dead-
bolt D1000. We reverse-engineered the Master Lock Vault
Enterprise Android app in order to study the lock-to-phone
Bluetooth communication protocol and phone-to-server com-
munication protocols and their security properties.

Before outlining our attacks, we describe our threat model
as a combination of adversary capabilities and security goals.

2.1 Threat Model
All of our adversaries have the expertise to reverse engineer
the mobile app, e.g., to extract static secrets that are necessary
to authenticate and use the Master Lock telemetry server. Ad-
ditionally, we consider the following adversary capabilities:



A1 physical proximity to the lock with the ability to eaves-
drop on the (encrypted) communication over BLE, and
ability to inject arbitrary BLE packets sent to the lock,

A2 temporary legitimate user-level access to the lock (e.g.,
as a hotel guest) in the past, which was either actively
revoked by the lock administrators or expired naturally.

These adversaries aim to compromise the following secu-
rity goals of the smart lock:

G1 only authenticated users can perform privileged opera-
tions including locking and unlocking the smart lock,

G2 access control is enforced as soon as the next legitimate
user opened the lock, including preventing access after
revocation or expiration,

G3 audit log integrity,

G4 memory safety of the smart lock,

G5 availability of the smart lock to authenticated users.

We extracted these security goals from a combination of
advertised features (G1–3) and common expectations on IoT
devices (G4–5). For instance, Master Lock states that “man-
ual access codes that user may have seen will remain viable
until an administrator changes the codes and has someone
perform a Bluetooth unlock to overwrite the old codes on the
lock” [15] (cf. G2). Furthermore, G3 is informed by their
statement that Master Lock “records every time a lock is un-
locked/locked, activated/deactivated, or its temporary code is
viewed”, which implies the audit log is complete and correct.

We consider threat models as the combination of adversary
capabilities and violated security goals. E.g., (A2, G2) consid-
ers an adversary with temporary user access to the lock who
preserves their access even after it was revoked or expired.

We discovered the following attacks against the Master
Lock Bluetooth Deadbolt D1000 smart lock by reverse engi-
neering the companion Android app.

• Attack 1 (session replay): Adversary A1 can record
the BLE communication of a whole session and replay
it to repeat all executed commands, including unlock-
ing the lock (which violates G1), without decrypting
the communication or possessing a valid access profile.
(Section 6.1.)

• Attack 2 (exceeding access): Adversary A2 with tem-
porary access can retain the access profile and continue
operating the lock until the original expiration, even if
the administrators actively revoke the access before ex-
piration, violating G2. (Section 6.2.)

• Attack 3 (clock tampering): With temporary access,
adversary A2 can adjust the clock time of the smart lock

arbitrarily, extending their own access past expiration (vi-
olating G2) or locking out all legitimate users (violating
G5). (Section 6.3.)

• Attack 4 (audit log tampering): Adversary A1 without
access to the lock can upload arbitrary audit events to
the telemetry server, and prevent legitimate audit events
from being uploaded, compromising G3. (Section 6.4.)

• Attack 5 (malformed messages): Without valid access,
adversary A1 can send malformed BLE messages to the
lock, making it unresponsive to BLE communication and
the touchpad (violating G5) or corrupting memory con-
tent (violating G4). With valid access, adversary A2 can
even perform unauthorized reads to smart lock memory,
further violating G4. (Section 6.5.)

3 Background

3.1 Notation

We use the following conventions. Encryption of message m
with AES in CTR mode with key k and nonce n is de-
noted by AES-CTR.Enc(k,n,m), and decryption of cipher-
text c as AES-CTR.Dec(k,n,c). Similarly, AES-CBC.Enc
and AES-CBC.Dec denote AES-CBC encryption/decryption.
Concatentation of byte strings is denoted by ∥ (e.g., a ∥ b
for byte strings a and b). Furthermore, we denote bytes in
hexadecimal notation, omitting concatenation where it is clear
from context, e.g., 25CAFE for bytes 25 (integer 37), CA (202),
and FE (254). The length in number of bytes of a byte string
a is denoted by |a|. We use |a|2 to denote the big-endian
encoding of a two-byte value with length less than 216.

3.2 Master Lock Bluetooth Products

The Master Lock company sells both traditional locks as well
as a line of Bluetooth and Electronic Locks that are claimed
to "withstand physical attacks and hacks, protecting your
property with military-grade encryption and high-security
features." [14] These products include Bluetooth padlocks,
lock boxes, and door hardware with a door controller and
deadbolt. Users can use the Master Lock Vault Enterprise
or Home edition mobile apps [14] to interact with the locks.
The product marketing emphasizes usability features such as
replacing traditional keys with user mobile phones, security
claims including that “encrypted digital keys can’t be dupli-
cated, so you control who has access”, and the ability of users
to manage and monitor locks remotely, with access to detailed
history logs that track when, where, and by whom the lock
was accessed. The Enterprise app supports user management,
which allows designated administrators to add and remove
regular users and modify their access to smart locks.



In this paper, we analyze the Master Lock D1000 Blue-
tooth deadbolt lock. Previous work identified security vul-
nerabilities in Master Lock Bluetooth padlocks [9], but we
are unaware of prior or more recent analysis of this deadbolt
product, which would be more likely to be used to secure
residential or commercial property.

3.3 Bluetooth Low Energy Protocols
The communication between the mobile phones and lock that
we analyze is based on Bluetooth Low Energy (BLE). To re-
duce battery usage and extend battery life, the lock is inactive
most of the time and does not send any advertising packets.
This means that phones cannot discover locks by scanning.
Locks start advertising only when they are woken up by tap-
ping their buttons or touchpad. At that point, a phone can
discover the lock, establish a connection, and communicate.
This communication is defined by the generic attribute profile
(GATT) and includes two important concepts: services and
characteristics. A service is identified by a service universally
unique identifier (UUID) and consists of a logical group of
characteristics. Every characteristic (identified by a charac-
teristic UUID) represents a data point and can be written or
read. Communication happens over a client-server architec-
ture. The locks are GATT servers, which store data in the
form of characteristics. Phones are GATT clients that read
and write characteristics to communicate with locks.

4 Reverse Engineering

To analyze the security of the protocols designed by Master
Lock, we reverse engineered their Master Lock Vault Enter-
prise Android app, version 2.28.0.1 published on April 10,
2024. A second consumer-focused app, called Master Lock
Vault Home, uses the same BLE protocols for phone-to-lock
communication. The only difference is in the server API end-
points. The enterprise app is the focus of our analysis because
it provides more functionality.

Android APKs contain Dalvik EXecutable (DEX) files,
which store executable code for applications and are com-
piled from Java or Kotlin code. Multiple tools can disassemble
APKs and generate intermediate code for DEX files in dif-
ferent formats, such as Smali, Jasmin, and Jimple [19]. From
these intermediate formats, decompilers can generate higher-
level Java code. Normally, if an APK is released as-is after
compilation, the decompiled code is fairly readable. Apart
from some missing local variable names and occasionally
misleading compiler-generated (synthesized) code, reverse
engineering such an APK is not much more challenging than a
normal code review; original class names and class or instance
variable names, as well as most code blocks, control flows,
and constants are reconstructed automatically. However, the
Master Lock uses several techniques to obfuscate and protect
its code in the hope of deterring reverse engineering.

Although obfuscation and protection make it significantly
more time consuming to analyze program behaviors, they
do not protect the apps against motivated adversaries. This
section discusses a selection of the custom obfuscation tech-
niques used in the Master Lock Vault Enterprise app, their
goal, and how we bypassed them. We focus on a static analy-
sis of the APK and only selectively execute parts of the code
dynamically. This has lower setup overhead than a fully dy-
namic analysis such as emulating the application or attaching
a debugger. It is also more generic since, e.g., debugging does
not help with code that is decrypted and executed at runtime.

4.1 Renaming

Technique. Packages, classes, annotations, class variables,
and instance variables are renamed to random sequences of
characters. A variant of this technique misleadingly renames
objects to share the same name as common library functions.

Objective. Obfuscation by renaming strips compiled code
of the semantic information added by descriptive names. The
resulting code is more time-consuming to understand, as all
this information needs to be reconstructed from context and by
inspecting all occurrences of the object in the program. This
makes it more challenging to identify the subset of code rele-
vant to our analysis. Intentionally confusing variable names
can lead to incorrect guesses for the semantics of variables,
classes, and methods, which diverts the focus of analysis.

Bypass. During reverse engineering, we replace random
names with more meaningful ones, for example, with a guess
at capturing the semantics of that object. In some cases, it can
already help to make names unique across different scopes.
For instance, the same random names might be used for mul-
tiple classes in different packages, or variables across classes.
Even if we cannot guess the semantics, assigning them generic
unique names (e.g., integer_1 or class_A) can make search-
ing for references more efficient.

4.2 Encrypting Constants

Technique. Security-critical constant integers, floating
point numbers, and strings are encoded and encrypted, and
only decoded and decrypted at runtime. The decoding code
and locally stored decryption keys are heavily obfuscated (e.g.,
by other techniques in this section) to hinder static analysis.

Objective. The encryption of primitives and strings makes
it difficult to find relevant code by searching key words. It also
creates challenges in the analysis of algorithms and protocols,
such as the binary formats of commands and messages.



Bypass. The code to decrypt and decode constants is often
run in the static initialization of classes to minimize the run-
time overhead added by this obfuscation. Hence, we can read
the deobfuscated constants by using dynamic partial evalu-
ation to load the classes and read the decrypted constants.
However, this requires direct access to the classes. Although
decompilers may not be able to reconstruct the Java source
code of obfuscated classes, tools including dex2jar2 can often
transform Smali to Java bytecode, where only few classes
require manual bytecode corrections. Given the bytecode as
JAR file, we can load it as a Java library and write Java code to
access fields of classes that contain the decrypted and decoded
constants after the class was initialized. Unfortunately, for
the Master Lock Vault Enterprise app, the static initialization
code for decryption contains calls to the Android platform
libraries which prevents us from loading the JAR. We discuss
this obfuscation technique next.

4.3 Calling Native Functions
Technique. Some constant primitives, especially integers,
are replaced with calls to native functions in the Android
platform libraries. A later fix-up calculation ensures that all
constants are identical in the end to the pre-obfuscation values
so that the code behavior is unchanged.

Objective. The additional function calls increase code com-
plexity and obscure the original simple constant values, which
impedes static analysis. Moreover, they create challenges
when executing code on non-Android platforms, as discussed
in Section 4.2.

Bypass. We replace native platform library functions with
local ones that return placeholder values. The return values
can be an arbitrary value from the range defined in the An-
droid documentation or by common sense. As the obfuscation
needs to guarantee deterministic behavior on all Android
platforms, returning any reasonable value must result in the
deobfuscated constant after the fix-up calculation. A possi-
ble alternative is to replace each function call (rather then
the called function) with a placeholder value, but that is less
efficient and prone to errors especially when dealing with
obfuscated code.

4.4 Using Reflection
Technique. Security-critical function call targets are ob-
scured by Reflection, where the call target—stored as a string
and passed as an argument to call the function—is obfus-
cated by techniques listed above. Reflection is mainly used
for calling or accessing dynamic targets, because the targets
are identified by string arguments to Reflection functions.

2https://github.com/pxb1988/dex2jar

Objective. Without explicit call targets as in normal func-
tion calls, it is challenging to find references to functions and
trace function calls. Without this information, we do not have
the context in which a function is used and cannot access
interactions between different parts of the code.

Bypass. For deobfuscation, we search the invocation targets
of relevant Reflections for function calls or field accesses.
These must be present as strings. If the strings are encrypted,
we can decrypt them with dynamic partial evaluation (see Sec-
tion 4.2). Alternatively, if the Smali code is too complicated,
we create breakpoints inside the Reflection related library
functions3 and print the argument values upon breakpoint hits.
Next, we can read the invocation targets from standard output.

4.5 Loading DEX Dynamically

Technique. Critical parts of the code are stored in sepa-
rate DEX files as encrypted assets inside APKs, which are
decrypted and loaded dynamically during run-time.

Objective. The classes stored in encrypted assets are not
available if only the DEX files are disassembled. Additional
steps are required to extract code from assets for static anal-
ysis and to load the contained classes for relevant dynamic
evaluation to work correctly.

Bypass. There is no way to directly load DEX files as Java
classes as they contain Dalvik bytecode, which is different
from Java bytecode and cannot be interpreted by JVM. To
get around this, we pull the source code related to loading
DEX files, mainly from the Android library dalvik.system
package, and make some modifications. To start, we write
DEX files to disk when they are loaded. Then, we convert the
DEX files to JAR files and load them as runtime libraries in
JVM. This modified DEX class loader will always try to load
requested classes from runtime libraries instead of reading
the real DEX files. The app code will perceive no difference
from a real DEX loader after all DEX files are converted and
properly loaded in the JVM runtime.

4.6 Obfuscating Control Flows

Technique. Control flow obfuscation aims to hide execution
paths by adding decoy paths through redundant conditions,
branches, or exceptions. The additional branches contain sim-
ilar but incorrect code compared to the original. Some byte-
code may be rearranged to confuse decompilers and make
them unable to reason about code logic and prevent them from
restructuring code to more common control flow patterns.

3Good candidate functions for breakpoints are Class.forName,
Class.getMethod, and Class.getField.

https://github.com/pxb1988/dex2jar


Objective. Excessive branches and exception handlers
make decompilers fail and manual reading of scrambled Smali
instructions very challenging. If there are slightly different
branches depending on some non-trivial conditions, it is hard
to statically determine the correct branch, impeding analysis.

Bypass. It is challenging to provide deobfuscation that
works well for all types of obfuscation and does not acciden-
tally change program behaviors, especially when the obfusca-
tion is aggressive. For example, there are thousands of lines of
bytecode for loading the core cryptographic functions for the
BLE communication from external encrypted DEX files. They
are strongly obfuscated, which makes decompilers fail and
manual inspection of bytecode too time consuming. Hence,
in our reverse engineering process, we use breakpoints inside
the JVM library functions to infer functions of some code
by inspecting the arguments, return values, and call stacks.
Although this method may not be accurate as we miss detailed
code logic inside obfuscated functions, the correctness can be
verified by checking output. For example, we can compare the
results from reverse engineered source code to the ones of the
original bytecode. Moreover, we confirm our understanding
of the code by testing our attacks against the real product.

Tradeoffs. We can try additional techniques to deobfuscate
control flow, such as removing all exception throwing and
catching, skipping the code restructuring process of the de-
compiler to tolerate abnormal control flows (although this will
make the code less understandable), and inserting fake line
number labels among bytecode instructions to allow break-
points and inspection of variable values in debuggers. How-
ever, there is a tradeoff between coverage and correctness:
more aggressive deobfuscation might produce more struc-
tured bytecode, but it might also introduce more errors, which
are time-consuming to catch. Thus, we avoided overly aggres-
sive control flow deobfuscation when possible, especially for
complicated functions.

5 Communication Protocols

This section describes the Master Lock app and smart lock
communication protocols and cryptography. We extracted
them using the techniques discussed in Section 4. These com-
munication protocols form the basis of our security analysis
in Section 6.

Recall from Figure 1 that the phone communicates with the
API servers over the Internet (discussed in Section 5.1) while
the smart lock is not connected to Wi-Fi and only commu-
nicates with the phone over BLE (discussed in Section 5.2),
possibly having the phone relay messages to the API server.

5.1 Phone-to-API Server Communication

Master Lock BLE devices use three different API servers:
an SDK server for firmware operations, a telemetry server
to collect audit logs from locks, and an enterprise API
server for user and access management. There are numer-
ous API endpoints defined in the APK file, but we focus on a
small security-critical subset. Among these, the factory reset,
firmware update, and latest audit event index API endpoints
are on the SDK server; the audit trail events upload API
endpoints are on the telemetry server; and all other API end-
points are on the enterprise API server. All communications
use HTTPS with certificate pinning to prevent machine-in-
the-middle (MITM) attacks.

Authentication on the SDK and telemetry servers. The
SDK server and the telemetry server do not require any user-
specific credentials. Each only requires two strings, a license
and a password, which are embedded in the app but are en-
crypted with 2048-bit RSA. The RSA private key to decrypt
these two strings is encoded in the app and is XOR-encrypted
with a custom-generated pad. Different pairs of licenses and
passwords are used for the SDK server and the two telemetry
servers (located in North America and Europe). After success-
ful authentication with the license and password, the server
returns a bearer token that is valid for one hour.

Factory reset and firmware update. The app can initiate
factory reset or firmware update requests by sending the de-
vice identifier, firmware version of the lock, and a valid bearer
token to the SDK server. The server then returns a sequence
of encrypted commands, which will be encapsulated in the
FirmwareUpdate command (as the cmdfirmware part) and be
relayed to the locks one by one.

Fetching latest audit event index. Before the app tries to
upload audit events recorded on the lock, it queries the latest
audit event index, providing the lock’s device identifier and
a valid bearer token to ensure only new events are uploaded.
After getting this index, the app can increment it and use it
as the start index for the ReadAuditTrail command sent to
the lock. Combined with the end index returned by the lock
in the ReadAuditTrailEventIndex commands, the app can
get the new audit event entries since the last upload. This
process may be repeated multiple times until all new events
are uploaded4 because the number of new events can be too
large to fit in one BLE message.

Audit event uploads. There are three types of audit events
that the app uploads to the telemetry server: encounter events,
device events, and virtual events. Encounter events happen

4When there are no new audit events, the lock returns the error code 4.



when the app connects to a lock, which contains the lock’s bat-
tery level, device identifier, encounter time, and location (lati-
tude and longitude provided by the phone). Device events are
specific to the lock. These include firmware updates, system
clock time changes, invalid access attempts, and unlock events.
Each event contains an event type, event data and length, event
index (a counter value in the lock), and a firmware counter.
The third type of event, virtual events, are only defined and
not used in the app. Their definition contains the event type,
event data, and time, where the data types are the same as in
device events, but event types are likely different.

The telemetry server has three separate API endpoints cor-
responding to these three types of events. Uploading audit
events does not require user, phone, or smart lock authenti-
cation. It only requires a valid bearer token and the device
identifier of the smart lock.

Authentication on the enterprise API server. The enter-
prise API server requires user authentication to access device
information including profiles and keys. A user needs to pro-
vide their organization ID, email, and password. The app
sends these along with a license and a password, which are
encoded and encrypted in the app but different from the pairs
for the SDK and telemetry servers. For the enterprise API
servers in North America and Europe, the same pair of license
and password are used. If the authentication succeeds, the app
receives a bearer token that is valid for 1.5 hours and other
user information and settings.

Device information. The app can query information for all
locks for which the current user has access with the bearer
token, including device identifiers, product models, firmware
versions, available updates, last known locations, and bat-
tery levels. The data includes device settings like passcode
nicknames, but not passcodes or session keys for BLE com-
munication with locks.

Session keys and access profiles. After receiving a device
identifier, the app can use the bearer token to request an access
profile for the lock. The access profile has the following for-
mat, concatenating the base64 encoded values of the session
key k, profile P, and the index idx of the last uploaded audit
trail event:5

access profile = base64(k) ∥ base64(P) ∥ base64(idx)

This information is used to establish a secure channel between
the phone and smart lock. As we describe further in Sec-
tion 5.2, the phone sends the profile P with the StartSession
command to the lock. This profile includes an encryption of
the session key k. After this exchange, the phone and lock can

5After base64 decoding, the session key is 32 bytes long (which corre-
sponds to the 256-bit AES key), the length of profile P is 70 bytes, and the
index is four bytes using little-endian byte order.

encrypt data with the shared key k. The API server response
also includes the validity start and end time for the profile.

Binary structures. There is no information about the byte
format of the firmware update command cmdfirmware and pro-
file P because they are not interpreted by the app. Instead, the
phone directly relays these bytes to the lock by encapsulating
them in the corresponding commands. Appendix A.2 pro-
vides additional information that we have inferred about their
structure, which is not required knowledge for our attacks.

5.2 Phone-to-Lock Communication
The interaction between phone and smart lock consists of
three stages: scan, connect, and communicate.

Scan. The smart lock sends BLE advertisements after it
is woken up via the touchpad. The phone scans for BLE
devices and the app parses scan records to get advertisement
data, which contain advertisement types and corresponding
advertisement records. To find a lock, the app checks that the
128-bit UUID advertisement record exists and matches one
of two constant UUIDs: UUIDdevice for a normal device state
and UUIDboot for a bootloader state. For completeness, these
UUIDs are listed in Table 3, Appendix A.1. Then, the app
parses the manufacturer-specific data in the advertisement
record, which contains the company ID, SKU (stock keeping
unit, a product identifier), device ID, and firmware version. If
the device ID matches a list of known devices to which the
user has access, the app proceeds to the connection stage.

Connection. The phone connects to the GATT server hosted
by the lock. Once connected, the app starts service discovery
by matching against one of the same service UUIDs as in the
scan stage. Then, the app gets the characteristic with UUID
UUIDconn-char and the corresponding descriptor with UUID
UUIDconn-desc that contains additional configurations for the
characteristic. The app sets the write type of the characteristic
to default and enables notifications for the characteristic, so
that it can receive responses from the lock. The app as the
BLE client can write to the characteristic to send messages to
the lock, and receive responses through notifications of BLE
server initiated updates from the lock.

Communication. The app authenticates to the lock with
the StartSession command, which also exchanges a ses-
sion key k as part of the profile P that is sent to the lock. For
invalid or expired profiles, the smart lock refuses to start a
session which prevents the user from executing commands
such as unlocking the door. All following commands are sent
over an authenticated and encrypted channel, since the phone
encrypts them with the session key before transmission. The
lock responses are all encrypted in the same way, except for



Algorithm 1 CmdTag(k,n,cmd)

Input: Key k, nonce n, command cmd; |k|= 32, |n|= 13
cmdencoded← 19 ∥ n ∥ |cmd|2 ∥ cmd ∥ 00 . . .0

▷ s.t. |cmdencoded| mod 16 = 0
x ∥ t ∥ y← AES-CBC.Enc(k,00 . . .0,cmdencoded)

▷ s.t. |t| = |y| = 8
Output: Tag t

Algorithm 2 CmdEnc(k,n,cmd)

Input: Key k, nonce n, command cmd; |k|= 32, |n|= 13
ccmd← AES-CTR.Enc(k,01 ∥ n ∥ 0001,cmd)
t← CmdTag(k,n,cmd)
Ct← AES-CTR.Enc(k,01 ∥ n ∥ 0000, t)
C← |cmd|2 ∥ ccmd ∥ Ct

Output: Ciphertext C

Algorithm 3 CmdDec(k,n,C)
Input: Key k, nonce n, ciphertext C; |k|= 32, |n|= 13
|cmd|2 ∥ ccmd ∥ Ct← C ▷ s.t. |ccmd|= |cmd|2, |Ct|= 8
cmd← AES-CTR.Dec(k,01 ∥ n ∥ 0001,ccmd)
t′← CmdTag(k,n,cmd)
t← AES-CTR.Dec(k,01 ∥ n ∥ 0000,Ct)
If t′ ̸= t then cmd←⊥

Output: Command cmd or ⊥

the StartSession command, which includes an initializa-
tion vector (IV) before the ciphertext. Next, we describe the
encryption and decryption schemes, and the format of com-
mands and responses.

Encryption and Decryption. The core encryption and de-
cryption functions are more protected than other code in the
app. They are inside an external encrypted DEX file, which
is decrypted and loaded dynamically by heavily obfuscated
loader code with thousands of Smali instructions. The scheme
consists of an authenticated block cipher built from AES in
CCM mode with a custom embedding function. CCM is a
mode of operation standardized in NIST SP 800-38C [2] for
block ciphers that combines a CBC-MAC authentication tag
with a counter mode stream cipher. The encoding function for
commands supports bounded-length commands of less than
216 bytes. They use a 13-byte nonce6 to build the IV for AES-
CTR encryption. Due to careful IV construction, they avoid
reusing IVs to encrypt the tag as well as command encryption,
and the size of the counter matches the maximum command
length. Algorithms 1 to 3 detail the customized encryption,
decryption, and authentication tag algorithms, respectively.

Establishing a communication session. If the profile P sent
in StartSession is valid, then the lock responds with a short-

6For communication sessions, this nonce is n = 00 . . .00 ∥ ns for a six
byte random value ns, i.e., the nonce only has six bytes of entropy.

Table 1: Command response error codes for BLE messages.

Error Code e Inferred Meaning
0 Ok (no errors)
1 Invalid Operation
2 Invalid Time
3 Not Permitted
4 Data Not Available

ened nonce ns and the encryption of an error code that should
always be zero. The app uses the latter to run the decryption
function and to confirm that the same session key k is used on
both sides. For command encryption with session key k, the
13-byte nonce n is constructed by prepending seven zero bytes
to the six-byte nonce ns. After this, the nonce increments for
every encryption (when the app sends commands to the lock)
and decryption (when the app receives responses from the
lock). The increments happen on the six-byte ns, and wraps
around after 248 increments.

Command and Response Encryption. For all commands
sent inside a session (i.e., after StartSession) except those
reading data from the lock, the response from the lock is en-
crypted using the format 00 ∥ CmdEnc(k,n,e), where e is a
one-byte error code described in Table 1. Similarly, all com-
mands (except StartSession) sent from the phone to the
lock are encrypted with the format 01 ∥ CmdEnc(k,n,cmd),
where cmd is the byte-encoded command. A list of the criti-
cal commands, their binary formats, and the corresponding
response formats from locks (if different from a single error
code) is shown in Table 2.

6 Attacks

This section presents five attacks on the Master Lock Blue-
tooth Deadbolt D1000 smart lock, discussing the exploited
vulnerability and impact for each. We refer to the specific
attacker capabilities and security goals outlined in Section 2.

6.1 Attack 1: Session Replay

Vulnerability. We find that sessions for the same user use
the same access profile (unless it expires) and hence the same
session key. For every session, the smart lock picks the same
nonce (000000000001, the six-byte big-endian integer one)
in its response to the StartSession command. This allows
a passive physically proximate adversary who merely records
Bluetooth communications to replay all packets sent by the
smart phone of the legitimate user at a later time. As long
as the adversary preserves the order and was able to record
all packets, the lock will execute the same commands again.
The recorded session and the corresponding BLE connection



Table 2: Relevant commands in the Master Lock phone-to-smartlock communication via BLE.
Command Type Command Format Response Format
StartSession 00 ∥ P 00 ∥ ns ∥ CmdEnc(k,n,e) OR 01

KeepAlive cmd= 01 default
WriteTime cmd= 0A ∥ time default
ReadAuditTrail cmd= 0CF001 ∥ idx 00 ∥ CmdEnc(k,n,e ∥ idx ∥ event1 ∥ event2 ∥ . . .)
ReadAuditTrailEventIndex cmd= 0D 00 ∥ CmdEnc(k,n,e ∥ idx)
FirmwareUpdate cmd= 14 ∥ cmdfirmware default

are likely to have already been terminated before the adver-
sary replays the messages, but this does not affect the attack
because it starts a new session with the same key and nonce.

Impact. This attack allows a physically proximate adver-
sary A1 recording a benign unlocking event to violate goal
G1 and later replay the recorded session to gain unauthorized
access to the property protected by the smart lock, such as a
house or hotel room.

6.2 Attack 2: Exceeding Access
Vulnerability. We noticed that every access profile is valid
for nine months when inspecting the metadata sent by the
API server when the profile is requested, which includes the
expiration date. Revocations only happen at the application
layer, which prevents guests with revoked access from using
the official Master Lock Vault Enterprise app to open the
smart lock. However, on the underlying protocol layer, the
access profile remains valid until its original expiration date.

Impact. An adversary A2 with temporary access to the lock
and the technical expertise to reverse engineer the protocol as
we did in this work can extract their own access profile while
they have legitimate access. After their access is revoked, they
can use the access profile to authenticate to the lock and send
any commands until the profile expires. Hence, in practice,
it takes up to nine months for a revocation to take effect,
violating G2.

6.3 Attack 3: Clock Tampering
Vulnerability. Although commands sent to the smart lock
are authenticated and encrypted, this does not prevent a ma-
licious user with temporary access from tampering with the
lock state. We find that the WriteTime command, which is
intended to synchronize the clock of the smart lock with the
phone time, can be misused. As we learned during disclosure
(see Section 8), this command should only be allowed for
admins.7 However, an adversary without admin privileges

7Admins can trivially tamper with the clock of the smart lock by adjusting
the system time on their phone.

can bypass this restriction by implementing their own Blue-
tooth GATT client with the protocols required to send the
WriteTime command directly to the lock and set the clock in
the lock to an arbitrary time of their choosing.

Impact. An adversary A2 with temporary access can set
the smart lock clock to a date in the past to maintain access
beyond the expiration time of their access profile, violating
G2. Alternatively, they can set the clock time to a future time,
which expires valid access profiles. As a result, authentication
requests with the StartSession command fail, resulting in
a denial-of-service attack that locks out valid users, violating
the goal of availability G5.

6.4 Attack 4: Audit Log Tampering
Vulnerability. The API endpoints for the telemetry server
are only authenticated with a static license and password,
which are both obfuscated and embedded in the app. Using
the reverse engineering technique described in Section 4.2, an
adversary can recover these values from the APK and authenti-
cate to the telemetry server. Once authenticated, it can upload
audit event data, which is neither encrypted nor authenticated.
We inferred the binary format for audit events by observing the
format of existing ones using the ReadAuditTrail command.
Forging events for a specific smart lock requires knowledge
of that device’s identifier, which is conveniently advertised
over BLE and can be recorded by any adversary in physical
proximity to the lock. Furthermore, audit events are associ-
ated with a monotonically increasing index. If an event for a
given index already exists, then the server does not accept any
new entries. On the one hand, this means that the adversary
can only forge entries after the last benign event that was
uploaded. On the other hand, benign events that are uploaded
after forged ones are also rejected. Adversaries can get the
current event index from the SDK API server, which features
the same flawed authentication as the telemetry server.

Impact. This attack allows an adversary A1 that is in the
physical vicinity a single time to sniff the device identifier and
forge audit events for security sensitive operations, such as
locking and unlocking, changing the clock time, and invalid
access attempts. Moreover, the adversary can also hide real



audit events by preemptively uploading seemingly benign
audit events to increase the event index and prevent the lock
from reporting a suspicious pattern of locking and unlocking
events, clearly violating log integrity G3.

6.5 Attack 5: Malformed Messages
Vulnerability. We discovered that the adversary can send
messages with mismatched encoded length and actual length
and cause the smart lock to crash. Specifically, when the en-
coded length is between 610 and 6561, the lock becomes
unresponsive and cannot be activated through the touchscreen
or BLE. These malformed messages affect both the unauthen-
ticated StartSession command as well as later commands
that are authenticated and encrypted. Furthermore, large en-
coded lengths that do not crash the lock (smaller than 610)
overwrite other memory. In particular, this allows an adver-
sary to overwrite the audit event index, which causes the
lock to return arbitrary memory as event data in responses
to ReadAuditTrail commands. After the audit events are
uploaded to the telemetry server, the memory data can be
exposed to the user/adversary as part of the audit log if the
memory bytes can be parsed as valid events. If the memory
cannot be parsed as valid events, the lock will label them as
“unknown” type events, which are not shown in the official
app and the web portal. However, these invalid events can still
occupy the indices for authentic valid events, causing these
valid events to be dropped.

Impact. Sending malformed StartSession commands al-
lows any adversary A1 with physical proximity to perform a
denial-of-service (DoS) attack, violating the availability goal
G5. Moreover, an adversary A2 with temporary access could,
in addition to running the same DoS attack, attempt to ex-
ploit the memory leak and write capabilities (which violate
the memory safety goal G4) to leak secret keys embedded in
the lock or gain privileged access to the lock. However, with-
out access to the firmware, such exploitation is challenging
and we did not further investigate this attack vector. We tried
extracting the firmware or the embedded secret keys by mea-
suring signals between pins on the circuit board, but it failed
because the lock seems to be using integrated memory and
flash together inside the CPU unit. We did not try side channel
or fault injection attacks for firmware extraction. Noise from
BLE communication might be an obstacle for the former, but
the latter is a promising avenue for future analysis.

6.6 Further Security Issues
Command Fingerprinting. One issue with the use of a
stream cipher for command encryption is that the ciphertext
lengths directly correspond to the plaintext lengths of the
encrypted command. Hence, despite the encryption, an eaves-
dropper can infer that the encrypted command belongs to the

subset of commands with a given length. While this may not
directly lead to a compromise of the security goals, it does
degrade the confidentiality guarantees of the encrypted com-
munication channel between the lock and the phone. This
could strengthen other attacks. For instance, since the smart
lock reuses the same nonce for every connection of the same
user (cf. Section 6.1), an adversary can swap commands from
different connections that were sent at the same position (e.g.,
the fourth command of two different exchanges). This allows
the attacker to customize the series of executed commands,
which may be useful for a more sophisticated exploit chain.

Custom CCM Encryption Scheme. Although CCM en-
cryption is standardized [2] and has a security proof by Jons-
son [8], we have some concerns with Master Lock’s custom
variant described in Section 5.2. Master Lock’s nonce only
contains six random bytes (see Section 5.2), which is less
than the seven bytes needed for Jonsson’s proof and, crucially,
smart lock D1000 does not guarantee nonce freshness. In-
deed, our Attack 1 (Section 6.1) exploited the fact that the
same nonces are used with the same key for different con-
nections. While the two-byte counter is somewhat small, the
maximum transmission unit for BLE (at most 512 bytes), as
well as the limit on command lengths, guarantee that none of
the encrypted plaintexts are too long.

7 Proof of Concept

To evaluate the correctness of our analysis and the effective-
ness of the attacks in Section 6, we wrote an Android app
implementing the BLE protocols we reverse engineered. The
firmware version of the Master Lock Bluetooth Deadbolt
D1000 used in our experiments was 1679338484, which was
the latest at the time of testing (November 5, 2024). We sus-
pect that this number represents the firmware build time or
release time (parsed at a timestamp, it corresponds to March
20, 2023, at 11:54:44), which supports our hypothesis that the
BLE protocols do not change frequently.

7.1 Communication Protocol Sanity Checking

We first simulated benign BLE communications with the lock
following the protocols we reverse engineered to verify the
correctness of our inferred protocols and commands. We used
a valid profile P received from the enterprise API server to
authenticate the StartSession command. Then we tried
all supported commands we discovered from the app on the
lock, including the KeepAlive command, but excluding the
FirmwareUpdate command. All our commands functioned
as expected. We could unlock, relock, read and write pass-
codes, read and write clock time, read audit logs, read bat-
tery levels and temperatures, read and write other configu-
rations, and so on. The connections were maintained if we



sent the KeepAlive commands every five seconds when there
were no other ongoing communications. If we did not send
the KeepAlive commands when idle, the connections were
closed by the lock after nine seconds. These results confirm
the correctness of our reverse engineering.

Furthermore, we authenticated to API endpoints using the
reverse engineered license and password, and checked that
we received valid responses.

7.2 Attack Verification

We confirmed that an adversary can reuse the same access
profile to authenticate across different sessions and replay
all commands in recorded sessions (Attack 1, Section 6.1).
Moreover, we verified that access profiles remain valid after
revocation (Attack 2, Section 6.2). The WriteTime command
allowed us to set an arbitrary clock time for the smart lock,
into the past or the future (Attack 3, Section 6.3). To test the
forgery of audit events (Attack 4, Section 6.4), we uploaded
two events for locking and unlocking the smart lock (Open
respectively Close), each associated with a timestamp. We
confirmed that the upload succeeded by observing the forged
events in the list of events on the enterprise web application
page. The latest audit event index returned by the SDK server
also increased by two.

To test sending malformed messages (Attack 5, Sec-
tion 6.5), we enumerated all possibilities for the encoded
message length. We found that if the encoded length is less
than 610 and does not match the actual length, the lock closes
the connection immediately and generates an audit event of in-
valid wireless access, indicating replays. If the encoded length
is greater than 6561, the lock immediately reboots. For the
memory corruption, we observed that the audit event index
was overwritten when we set the encoded length to a large non-
crashing value (e.g., 609), which causes the ReadAuditTrail
to return random event data. We did not have access to the
smart lock firmware to confirm that this was a buffer overflow
vulnerability, but after disclosure Master Lock confirmed it.

8 Disclosure and Mitigation

We reported our findings to Master Lock on March 10, 2025.
The security team of Fortune Brands Connected Products—
the company owning Master Lock as well as Yale and August
smart locks—responded on March 14. We had an in depth
meeting with their team in which they acknowledged our
findings in detail, provided context on the origin of these
issues, insights into their design decisions, and updates on the
mitigation progress. We summarize this discussion below.

Session replay (Section 6.1). Sessions can be replayed
because they reuse the same key and starting nonce, which
makes messages sent by a legitimate user in a previous session

valid in a later session. To mitigate this, the lock should choose
a fresh random nonce from a cryptographically large space
for every session. This will cause replayed packets to fail
the authenticity check during decryption with CmdDec with
high probability because the packet nonce will not match the
session nonce. Master Lock informed us that among their
products, only the D1000 firmware resets the nonce when
starting connections. They will release a firmware update for
the D1000 in June 2025 that randomizes the nonce.

Exceeding Access (Section 6.2). Mitigating this vulnera-
bility faces a challenging tradeoff between functionality and
security. A simple solution would be to require the lock to
communicate with one of the API servers over a secure chan-
nel (e.g., authenticated by the shared symmetric secret used
for firmware updates) and verify that an access profile is still
valid. However, this requires an Internet connection, and the
lock relies on the phone to relay packets to communicate with
API servers. Master Lock explained to us that some of their
products are used in remote locations with sparse Internet
access (e.g., a cabin in the forest). Users still expect such
locks to work with the phone,8 which prompted Master Lock
to issue access profiles that are valid for a fixed period. A
mobile phone storing such a profile can unlock the smart lock
without Internet access until the profile expires. Of course,
this trades off security for functionality, because the same
time period also defines how long it takes for revocation to
take effect.

Master Lock products usually allow access profiles to be
valid for one week. Interestingly, the D1000 profiles that we
found and exploit in Section 6.2 are an exception with the
much longer validity period of nine months. Master Lock
explained that this exception was due to a firmware bug that
previously caused the real time clock of the D1000 lock to
jump forward in time. To avoid locking users out, they in-
creased the validity period to nine months.

This firmware bug is already fixed in the D1000 firmware
that we targeted. Master Lock planned to push out firmware
updates to D1000 locks more aggressively, and then reduce
the validity period of access profiles to seven days, as in
their other products. They later shared that their remediation
is in progress and should be completed by June 2025. This
mitigation was chosen to still support the offline use case. Our
attack still applies, but the attack window is shorter.

Clock Tampering (Section 6.3). This attack shows that the
clock time of the smart lock is security critical to enable the
lock to accurately assess the validity of access profiles. Master
Lock explained that a lock always fetches the time from a
trusted server if the phone offers a connection. We suggest
that these time updates should be authenticated to prevent the

8Some locks, including the Deadbolt D1000, have a physical numeric
pad, where the user can still enter their access code manually.



phone from tampering with the time when relaying packets.
For this, they could use the lock-specific symmetric key that
is used to protect for firmware updates and access profiles to
compute a message authentication code (MAC) for the time
update. Such authenticated time updates should be protected
against replay. They also rely on honest users to relay them
to the lock since malicious users can choose to drop them.

However, for the case of using the smart lock offline, clock
drift still needs to be corrected to avoid locking out users.
Thus, Master lock continues to allow trusted users to use
the WriteTime command to set the clock of the lock to the
user’s phone time. Their app only allows this operation if
a user has admin privileges and the phone is offline at that
moment. Unfortunately, the access profiles for non-admins
also have the permission set that allows them to perform this
operation. Our attack circumvented their app checking logic
by implementing the communication protocols ourselves and
sending the WriteTime command directly to the lock.

Audit Log Tampering (Section 6.4). We recommend that
audit events are generated on the lock and authenticated with
a MAC using the lock-specific symmetric key that is shared
with the API servers. The adversary does not know this key,
so they can no longer forge audit events or modify them when
they are relayed over the phone. Master Lock first expressed
concern about the complexity of the change, as it requires
changes in the backend and the smart lock firmware. They
also argued that audit logs are already imperfect: it is possible
that many events happen before the lock can send them to
the server (e.g., in the offline use case). Since the lock has
limited resources, it uses a ring buffer to store events and may
overwrite older entries before they can be stored on the server.
From the start, Master Lock said they will address the lack of
authentication for the audit event API endpoint, and only allow
users with permission to access an audit log to upload new
events for it. However, this API access restriction still allows
existing users (e.g., with temporary access) to upload bogus
audit events, which could be avoided by adding MACs. Master
Lock later shared that they decided to fully mitigate our attack
after all, but did not share more technical information.

Malformed Messages (Section 6.5). This attack highlights
that testing with invalid inputs is especially important when
communicating over untrusted channels or with untrusted
entities. Master Lock confirmed that this vulnerability is due
to a buffer overflow in the firmware. There are many tools
to detect and avoid such memory safety vulnerabilities, such
as AddressSanitizer [18], fuzz testing, or the use of memory-
safe programming languages like Rust. Master Lock shared
that they included boundary checks with C assertions in their
builds to protect against such overflows but realized that those
assertions were removed for production builds. The D1000
firmware update of June 2025 that mitigates Attack 1 will also
patch this buffer overflow and undergo more extensive testing.

Ethical Considerations. We made efforts to carry out our
research responsibly: we minimized our interaction with Mas-
ter Lock web servers and only ever interacted with test ac-
counts for users and smart locks we owned.

We believe that this type of product analysis and the lessons
learned help to improve the security of Master Lock products
for their end users. Our work also highlights the need for
further protocol analysis of other smart locks so that vulnera-
bilities can be discovered and patched before malicious actors
find and exploit them in the wild and cause real harm.

9 Discussion

Despite Master Lock’s efforts to secure their product by au-
thenticating APIs, encrypting communication, and obfuscat-
ing their mobile app, our research shows that more sophis-
ticated protocol vulnerabilities remain and still compromise
various security goals.

Insecure Protocol Design. The presence of encryption in
the BLE communication does not suffice to create a secure
protocol. Master Lock claims to use “military-grade authenti-
cation and encryption mechanisms built upon proven, NIST
recommended and FIPS approved algorithms to deter sniffing,
replay and manipulation attempts” [15]. This encryption was
enough for prior work to conclude that there are no replay
attacks [1], and to deter further analysis of the Bluetooth pro-
tocol [9]. Nonetheless, our Attack 1 (Section 6.1) achieves
exactly such a replay attack. It turns out that Master Lock
is only secure against replaying single BLE messages inside
the same session. However, their smart lock reuses the same
nonce at the start of every session, which enables an adver-
sary to record and replay full sessions. This shows that secure
cryptographic protocol design requires cryptographic building
blocks to be composed and used correctly.

Secure Lock-to-API Server Channel. The Master Lock
smart lock can only communicate with the API server through
the user’s smart phone. While previous work [6, 22] studied
this “gateway architecture” as a new deployment model that
has advantages and disadvantages over directly connecting
the lock to Wi-Fi, we observe that Master Lock did not design
a protocol with an end-to-end secure channel between the lock
and the API server. This problem is the root cause of Attack
3 described in Section 6.4: if audit events had been sent from
the lock to the telemetry server over an authenticated channel,
it would not have been possible to forge them.

However, establishing such a channel is challenging. While
BLE offers pairing and bonding to establish a secure chan-
nel between the phone and lock, this does not prevent the
phone from injecting malicious time updates. Moreover, the
API authentication with user credentials and secret material
embedded in the app does not prevent a malicious user from



uploading forged audit events. Instead, Master Lock faced
the problem of establishing a secure channel across two pro-
tocols: IP (server-to-phone) and BLE (phone-to-lock). They
appear to have successfully created such a secure channel
for firmware updates, which uses a static symmetric secret
key embedded in the lock, but not for other communication
between the phone and the server.

Another challenge is that the API server may not be reach-
able when a user unlocks the lock, and vendors face a difficult
choice between security and limiting functionality. For exam-
ple, if time updates were only done when the phone has an
Internet connection, then they could be authenticated by the
server, and a malicious guest would not be able to control the
lock’s clock time (Attack 2, Section 6.3). However, smart lock
clocks in remote areas could drift over time, which could lead
to the lock rejecting valid access profiles when its internal
time is set to a future date.

A significant effort to secure IoT deployments produced
Matter [10], a standard that focuses on interoperable and
secure integration of IoT devices from various manufactur-
ers and over different protocols. To bridge protocols, Matter
requires trusted components (called controller and commis-
sioner) to provision devices and issue certificates. However,
in a smart lock deployment, the user’s phone cannot always
be trusted. Therefore, an interesting question for future work
is how one can extend Matter or design another framework
for IoT devices in gateway deployments to support secure
protocol development, taking into account that (1) the com-
munication must run over multiple protocols, (2) the IoT
device only has limited energy and computational resources
and might run on custom hardware and (3) the IoT device
may be offline at the time of interaction.

10 Related Work

Closest to our work is an earlier analysis of the Master Lock
Bluetooth padlock by Knight, Lord, and Arief [9] in 2019.
They report that the Master Lock APK was unobfuscated and
the API endpoints had weak authentication using API keys
that could be bypassed using static, hard-coded credentials.
They also discovered that the Real Time Clock (RTC) of the
padlock is paused when the battery is removed, and resyn-
chronized with the clock time of the padlock owner’s phone.
They conclude that this attack is not feasible in practice, as
the padlock needs to be open to remove the battery and the at-
tack requires access to the owner’s phone. In comparison, our
Attack 3 in Section 6.3 exploits our understanding of Master
Lock’s protocol to send the underlying command used for
clock synchronization in cases where the official app would
not send it, making clock tampering practical even on newer
Master Lock products that include mitigations against these
historical vulnerabilities. Knight, Lord, and Arief attempted
to sniff the Bluetooth communication between the lock and
the phone, but were not able to find any vulnerabilities. We

reverse engineered the encryption protocol (Section 5.2) and
implemented our own client, which allowed us to directly
interact with the lock. We did not further investigate an access
control feature allowing guests to open the lock only during
certain hours by generating new temporary codes directly with
the webserver API, which Knight, Lord, and Arief were able
to bypass. Finally, Knight, Lord, and Arief found a misconfig-
ured API point that leaks a primary code to guest users, which
allows them to unlock the padlock even after their access was
revoked. They reported their findings, and Master Lock fixed
the API server misconfiguration and authentication.

Two security analyses of the August smart lock [7, 21]
found multiple attacks either due to the lack of security mea-
sures or a very strong adversary model. This lock works sim-
ilarly to the Master Lock we analyzed: the lock also only
communicates through the user’s phone with a web server
hosted by August. The attack of [7] also bypasses certificate
pinning and elevates guest access to admin privileges by sim-
ply replacing the user type field in the API request. Both
research teams find that the August smart phone app stores
critical information in plaintext, including the handshake key
(which allows an adversary to open the door) and the firmware
encryption key. However, retrieving it requires privileged ac-
cess on the owner’s phone. Ye, Jiang, Yang and Yan [21] also
find a DoS attack whose root cause is that the August smart
lock can only handle one request at a time and insufficiently
restricts access to such operations against unauthorized users.
In comparison, our attacks achieve unlocking and other secu-
rity violations with a weaker adversary that does not require
access to the lock owner’s phone.

Rose and Ramsay [1] analyzed 16 Bluetooth locks and
presented vulnerabilities against 12 of them at DEF CON 24.
The Master Lock padlock was one of the four smart locks
for which they were not able to find any vulnerabilities. They
found passwords exchanged in plaintext over BLE in four
locks (two Quicklock models, iBluLock, and Plantraco). Fur-
thermore, they compromised five locks (Ceomate, two Ele-
cycle models, Vians, and Lagute) with replay attacks, where
they unlocked the locks by replaying a recorded (and possi-
bly encrypted) exchange of the lock and an authorized user.
Using fuzzing, they discovered an error in the Okidokeys
Smart Doorlock, where the lock would open when a particu-
lar byte of the key is set to zero. They decompiled the APK
of the Android app for the Danalock Doorlock and found a
hard-coded password that was used to secure the communi-
cation. In a more sophisticated attack on the Mesh Motion
Bitlock Padlock, they were able to exploit a predictable nonce
to impersonate the smart lock towards the user and steal their
password.

Ho et al. [6] investigate the presence of unauthorized un-
locking (G1) and state inconsistencies in five smart locks
(August, Danalock, Kevo, Okidokeys, and Lockitron). They
introduce the term “Device-Gateway-Cloud (DGC) architec-
ture” for the deployment model that Master Lock also follows,



where the smart lock connects to a web server of the vendor
using the owner’s phone as a gateway. They consider four
types of adversaries: physically present (corresponds to A1), a
“revoked adversary” (A2), and two additional ones not consid-
ered in our work called “relay attacker” and “thief”. The latter
steals the owners authorized device. They find generic revo-
cation evasion attacks against all smart locks using the DGC
architecture by simply putting the phone into airplane mode
to prevent it from fetching updated revocation information.
Our Attack 2 (Section 6.2), which also allows an adversary to
exceed access, works even if the smart lock fetches updates
because it exploits a disconnect between logical revocation
and the expiration of the underlying key material used by the
protocol. Ho et al. also cut Internet access on the gateway to
cause state inconsistencies by preventing audit events from be-
ing uploaded. Our Attack 4 (Section 6.4) not only prevents the
creation of audit events but allows an adversary to forge them.
In summary, their paper explores generic attacks against locks
with the DGC architecture while we explore targeted attacks
against the Master Lock which require a deeper understanding
of the protocol and exploit lower-level assumptions.

The analysis of the DGC architecture was more recently
extended by Zhou et al. [22] to the concept of Mobile-as-a-
Gateway (MaaG) IoT. They analyze ten different smart locks
(from Level, August, Yale, Ultraloq, Kwikset Aura, Honey-
well, Schlage, Geonfino, Tile, Chipolo). They find different
vulnerabilities related to the maintenance and synchronization
of access policies, identifying inconsistencies in all analyzed
smart locks including static key material that is not rotated on
revocation. Our work shows that such attacks are still present
in other smart lock models, e.g., our Attack 2 (Section 6.2)
is similar to some of their findings. In addition, our work
explores a broader range of attack vectors using a deeper
analysis of a single smart lock protocol, showing that the
ecosystem also suffers from regular security vulnerabilities
independent of the MaaG architecture.

Other work, such as an analysis of SmartThings by Fernan-
des, Jung, and Prakash [3], analyzed a different deployment
model. These architectures provide a platform for various
different smart home applications, including locks that are
directly connected to the Internet. This work is less closely
related to ours and such architectures face other challenges.

Levi et al. [11] describe relay attacks against (non low-
energy) Bluetooth. Rather than analyzing and breaking the
authentication protocol, these attacks relay the physical Blue-
tooth signal between the IoT device and a legitimate user
to trick the device into assuming the user is nearby and au-
thenticating. Similar techniques were used to open car doors
that use passive keyless entry systems by capturing the key’s
signal with an antenna and amplifying it [4].

Lonzetta et al. [12] survey various Bluetooth attacks against
IoT devices. We already discussed attacks on BLE, and in
particular for smart locks, above. The remaining attack on
non-BLE Bluetooth include downgrade attacks, PIN cracking,

and static link keys in older Bluetooth protocol versions. Most
other attacks are against specific implementations and exploit
unauthenticated messages, device impersonation via MAC
spoofing and other techniques, and exploiting leaked hard-
coded secret key material which may be extracted or stolen
by malware on the device.

11 Conclusion

We analyzed the Master Lock Deadbolt D1000 smart lock and
found five attacks through reverse engineering their protocol:
First, although prior work concluded that Master Lock was not
vulnerable to replay attacks, we find that nonce reuse in their
variant of AES-CCM still allows session replay including
unauthorized unlocking. Second, underlying user profile key
material is not revoked appropriately which allows former
guests to still open the lock after their access ended. Third,
we found that temporary guests can bypass application-level
restrictions by directly talking to the lock and set the lock’s
clock to arbitrary values to avoid expiration or lock valid
users out. Fourth, the telemetry server API has insufficient
authentication and allows any adversary knowing the device
identifier of a lock to forge entries or prevent legitimate once
from being uploaded. Finally, malformed messages allow
an adversary to overwrite and leak memory or make the lock
inoperable until a reboot. While Attacks 1, 2, and 5 are specific
to the Deadbolt D1000 product, Attacks 3 and 4 likely also
apply to other Master Lock products.

The root causes for these attacks include that Master Lock
does not properly establish a secure channel between the lock
and their servers due to mistakes in the encryption scheme,
reliance on code obfuscation to hide secrets, and insufficient
identity and data authentication. We reported these vulnera-
bilities, and Master Lock has taken steps to mitigate them.

We encourage more analysis of the security of smart lock
protocols, as well as efforts to build a secure framework that
allows IoT vendors to securely establish channels to their
deployed devices, including through paths involving multiple
protocols and untrusted devices.
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A Additional Reverse Engineering Results

This section collects additional insights from reverse engineer-
ing, which provide informative context but are not directly
used in our attacks.

A.1 BLE UUID Characteristics
Table 3 shows the UUIDs for BLE communication that we ex-
tracted during reverse engineering (as described in Section 4).

A.2 Binary Structures Of Profile And
Firmware Update Commands

As discussed in Section 5.1, the firmware update com-
mand cmdfirmware and profile P bytes are directly relayed
to the lock, without parsing them on the phone. Hence, we

cannot find their structure in the mobile app source code.
Nevertheless, there are patterns in the samples we collected
from the enterprise API server. We inferred that the com-
mand cmdfirmware and profile P have the same binary struc-
tures. They both start with six bytes of the shortened nonce ns,
followed by two bytes for the data length (in big-endian en-
coding), the data, and—finally—an eight-byte message au-
thentication code (MAC). Excluding the six-byte shortened
nonce at the beginning, the remaining parts have the same
structure as the output of the encryption function CmdEnc.
Thus, we suspect that the command cmdfirmware and profile P
are also produced using their custom AES-CCM scheme, with
the first six bytes as the ns and the rest as the ciphertext that
can be decrypted and authenticated by the decryption func-
tion CmdDec. This would imply that the SDK server and the
enterprise API server must, for every lock, know a symmetric
secret key that is embedded into the lock. These keys must
be fixed at least for the same firmware version and without
factory resets for the same lock. We do not know whether the
keys are different for different locks, because we only have
one lock on which we can experiment.

We hypothesize that the profile P contains the following
information: The length of the plaintext is 54 bytes according
to our inference above, which should contain a 32-byte session
key, four-byte access start time and four-byte access end time
both encoded as seconds since “the epoch,” four-byte user
id, six-byte device id, and four-byte remaining unknown (but
could be a session key identifier, some counters, or firmware
version). We cannot verify these because the app never parses
the profile P and we were unable to extract the firmware or
the symmetric secret key from the lock.



Table 3: Relevant UUIDs for reverse engineering the Master Lock phone-to-smartlock communication via BLE.
Shorthand UUID Description
UUIDdevice 94e00001-5d5b-11e4-846f-4437e6b36dfb Normal service UUID
UUIDboot 94e00000-5d5b-11e4-846f-4437e6b36dfb Bootloader (firmware update) service UUID
UUIDconn-char 94e00002-5d5b-11e4-846f-4437e6b36dfb Characteristic UUID
UUIDconn-desc 00002902-0000-1000-8000-00805f9b34fb Descriptor UUID
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