
Optimizing Elligator 1 on Curve1174
Christopher Vogelsanger, Freya Murphy, Miro Haller

1

Introduction

2

Elligator

[1] D. Bernstein et al. Elligator: Elliptic-curve points
indistinguishable from uniform random strings. ACM
Conference on Computer and Communications
Security 2013. 2013.

3

● Elligator: Elliptic-Curve points
indistinguishable from uniform
random strings. [1]
○ Helps prevent censorship of

obvious curve points

Elligator mapping

4

Forward mapping (string to point) Inverse mapping (point to string)

Straightforward C Implementation

5

Build, Test, and Benchmark Environment

● Unit testing framework: Check [1]
○ Organized in test suites and test cases
○ Nice test result report
○ GitLab CI/CD Pipeline Integration

6[1] https://libcheck.github.io/check/

Build, Test, and Benchmark Environment

● Benchmarking Library
○ Takes prepare, benchmark, and cleanup function
○ Execute benchmark function in S sets each with R repetitions

■ Take median

● Benchmarks
○ Measure runtime of all functions
○ Count function calls
○ Count integer operations

7

Reference Implementations

● Could not find any available implementations
● Elligator website mentions a Sage implementation [1].
● We made our own Sage implementation
● BigInt arithmetic:

○ GMP (The GNU Multi Precision Library) [2]
○ Used to benchmark BigInt operations and Elligator mapping

8
[1] https://elligator.cr.yp.to/software.html
[2] https://gmplib.org

Straightforward BigInt Library

● BigInt allocates alloc_size 64-bit chunks of memory
● size chunks are currently used
● Big integer arithmetics

○ “The Art of Computer Programming” [1]

● Clean code & convenient interface
○ Allows aliasing names, nested calls
○ Explicit error messages

9
[1] Knuth, Donald Ervin. The Art of Computer Programming. Volume 2, Seminumerical Algorithms. 3rd ed. Place of
publication not identified: Addison Wesley, 1997. Print.

Cost Analysis

10

Integer Operations

● Keep track of
following iops

○ Add/Sub
○ Mul
○ Div
○ Mod
○ Shift
○ Bitwise

● Cost function:
○ C(x) = Σ iops(x)

● Add up all integer
operations

11

Roofline Plot

● Main optimization target:
○ MacBook Pro Mid 2015
○ Intel Haswell i7-4980HQ 2.8 GHz
○ Apple clang version 12.0.0

● Ports with execution units for integers [1]

12[1] Intel 64 and IA-32 Architectures Software Developer's Manual - Volume 3B Intel Corporation, September 2019

Port 0 Port 1 Port 5 Port 6

ALU
Shift

ALU ALU ALU,
Shift

Divide Slow int

Roofline Plot

● Peak performance
○ Without vectorization: 4 iops/cycle
○ With vectorization: 16 iops/cycle

■ Assuming 64-bit integers

● Memory bandwidth
○ Novabench: ≅25 GB/s

■ 8.9 B/cycle

13[1] Intel 64 and IA-32 Architectures Software Developer's Manual - Volume 3B Intel Corporation, September 2019

Roofline Plot

14

Non-Vector Optimizations

15

Memory Operations

16

Stack vs Heap

17

Basic Optimizations

● Replace ‘mod power of 2’ with bitwise AND
● Replace power of 2 divisions by right-shift
● Assume no aliasing in BigInt parameters
● Create specific functions

○ Single chunk multiplication
○ Power with integer exponent

● Remove multiplications by χ
● Loop unrolling
● Pre-computation
● Optimization flags
● Compile all at once

18

Algorithmic Optimizations – mod

19

● Normally, mod requires division with rest
● Special prime of Curve1174

○ Recursion necessary
○ Only works for X ≤ 2256

● Binary search with precomputed values
○ Search a ∈ [1, 32] s.t. 0 ≤ X - aq < q

Algorithmic Optimizations – Square

● Special case of multiplication
○ Reduce memory access

■ Only one operand
○ Can save around half the chunk multiplications

20

a0a3 a0a2 a0a1 a0a0

a1a3 a1a2 a1a1 a1a0

a2a3 a2a2 a2a1 a2a0

a3a3 a3a2 a3a1 a3a0

Algorithmic Optimizations – special pow

● Multiple special power operations
○ Chi: χ(a) = a(q-1)/2

○ Inverse mapping: ɑ(q+1)/4

○ Fermat inverse: a-1 ≡ aq-2 (mod q)

● Exponents have prefix of ‘ones’:
○ (q-1)/2 = 0b1111...11111011 (247 ones in prefix)
○ (q+1)/4 = 0b111111...111110 (248 ones in prefix)
○ q-2 = 0b11111...1110101 (247 ones in prefix)

● Ensure suffix separately
● Remove branching from square-and-multiply
● Enables AVX optimizations (later)

21

Algorithmic Optimizations – speedup

22

Vector Optimizations

23

AVX add, sub, mul

● Little benefit
● Carries

○ Manually over lanes
○ Needs #chunks ops

● Data movement
○ Costly in AVX

24

AVX mul 4 indep. inputs

● Linear dependency for square
operations

● Result can use four variables r1, r2, r3, r4
for independent partial products

● Combine at end r = r1 ⨉ r2 ⨉ r3 ⨉ r4
● Loop unrolling to avoid aliasing

25

AVX mul 4 indep. inputs

● Pack data
○ The same chunk from 4 different BigInts are adjacent

● Do the normal mul algorithm with vector instructions
○ No need to move data horizontally

● Unpack the data

● Moderate speed
○ Packing/Unpacking is an overhead

26

Conclusion

27

Overall speedup

28

44x

Comparison to GMP

29

Laptop Comparison

30

● Devices:
○ MacBook Pro Mid 2015 with Intel Haswell i7-4980HQ 2.8 GHz, native clang
○ MacBook Pro 2020 with Apple M1, native clang
○ AMD Ryzen 9 3900X @4.1GHz, Win10 WSL Ubuntu and gcc

