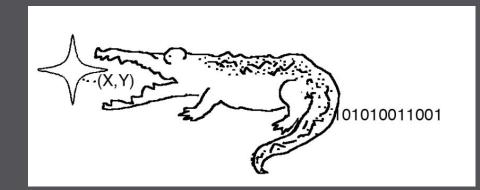
Optimizing Elligator 1 on Curvel174

Christopher Vogelsanger, Freya Murphy, Miro Haller

Introduction

Elligator

- Elligator: Elliptic-Curve points indistinguishable from uniform random strings. [1]
 - Helps prevent censorship of obvious curve points



[1] D. Bernstein et al. Elligator: Elliptic-curve points indistinguishable from uniform random strings. ACM Conference on Computer and Communications Security 2013. 2013.

Elligator mapping

$$egin{aligned} &u=(1-t)/(1+t),\ &v=u^5+(r^2-2)u^3+u,\ &X=\chi(v)u,\ &Y=(\chi(v)v)^{(q+1)/4}\chi(v)\chi(u^2+1/c^2),\ &x=(c-1)sX(1+X)/Y,\ &y=(rX-(1+X)^2)/(rX+(1+X)^2) \end{aligned}$$

Forward mapping (string to point)

$$egin{aligned} & \overline{\eta} = rac{y-1}{2(y+1)}, \ & ar{X} = -(1+\eta r) + ((1+\eta r)^2 - 1)^{(q+1)/4}, \ & z = \chi((c-1)sar{X}(1+ar{X})x(ar{X}^2+1/c^2)), \ & ar{u} = zar{X}, \ & ar{t} = (1-ar{u})/(1+ar{u}) \end{aligned}$$

Inverse mapping (point to string)

Straightforward C Implementation

Build, Test, and Benchmark Environment

- Unit testing framework: Check [1]
 - Organized in test suites and test cases
 - Nice test result report
 - GitLab CI/CD Pipeline Integration

Build, Test, and Benchmark Environment

• Benchmarking Library

- Takes prepare, benchmark, and cleanup function
- Execute benchmark function in *S* sets each with *R* repetitions
 - Take median

• Benchmarks

- Measure runtime of all functions
- Count function calls
- Count integer operations

 $egin{aligned} & ext{for set in } \{1, 2, ..., S\} \ & ext{prep()} \ & t_0 = ext{tsc}() \ & ext{for j in } \{1, 2, ..., R\} \ & ext{bench_fn}(j) \ & T = T \cap \{(ext{tsc}() - t_0)/R\} \ & ext{cleanup}() \ & ext{return median}(T) \end{aligned}$

Reference Implementations

- Could not find any available implementations
- Elligator website mentions a Sage implementation [1].
- We made our own Sage implementation
- BigInt arithmetic:
 - GMP (The GNU Multi Precision Library) [2]
 - Used to benchmark BigInt operations and Elligator mapping

Straightforward BigInt Library

- BigInt allocates *alloc_size* 64-bit chunks of memory
- *size* chunks are currently used
- Big integer arithmetics
 - \circ "The Art of Computer Programming" [1]
- Clean code & convenient interface
 - Allows aliasing names, nested calls
 - Explicit error messages

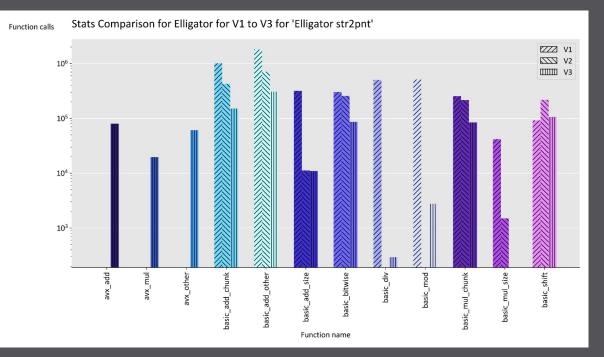
typedef struct BigInts
{
 uint64_t sign : 1;
 uint64_t overflow : 1;
 uint64_t size : 62;
 uint64_t alloc_size : 62;
 dbl_chunk_size_t *chunks;
} BigInt;

[1] Knuth, Donald Ervin. The Art of Computer Programming. Volume 2, Seminumerical Algorithms. 3rd ed. Place of publication not identified: Addison Wesley, 1997. Print.

Cost Analysis

Integer Operations

- Keep track of following iops
 - Add/Sub
 - o Mul
 - Div
 - Mod
 - Shift
 - Bitwise
- Cost function:
 - \circ C(x) = Σ iops(x)
- Add up all integer operations



Roofline Plot

- Main optimization target:
 - MacBook Pro Mid 2015
 - Intel Haswell i7-4980HQ 2.8 GHz
 - Apple clang version 12.0.0
- Ports with execution units for integers [1]

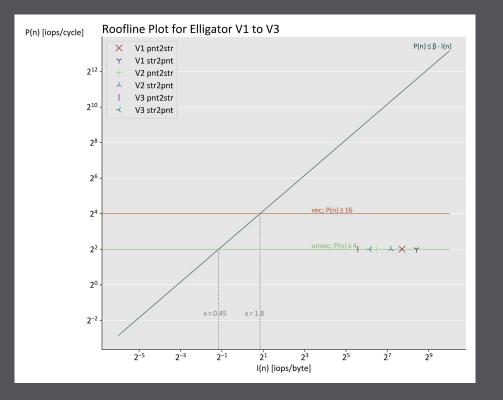
Port 0	Port 1	Port 5	Port 6
ALU Shift	ALU	ALU	ALU, Shift
Divide	Slow int		

Roofline Plot

• Peak performance

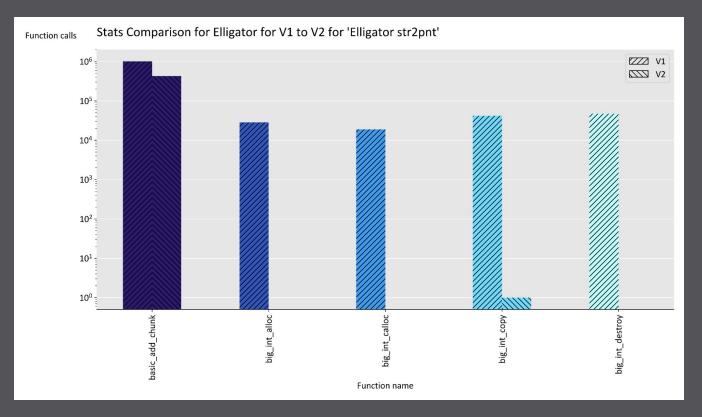
- Without vectorization: 4 iops/cycle
- With vectorization: 16 iops/cycle
 - Assuming 64-bit integers
- Memory bandwidth
 - o Novabench: ≅25 GB/s
 - 8.9 B/cycle

Roofline Plot

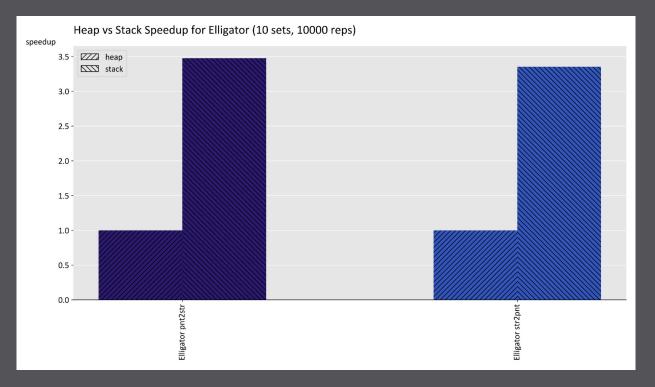


Non-Vector Optimizations

Memory Operations



Stack vs Heap



Basic Optimizations

- Replace 'mod power of 2' with bitwise AND
- Replace power of 2 divisions by right-shift
- Assume no aliasing in BigInt parameters
- Create specific functions
 - Single chunk multiplication
 - Power with integer exponent
- Remove multiplications by χ
- Loop unrolling
- Pre-computation
- Optimization flags
- Compile all at once

Algorithmic Optimizations – mod

- Normally, *mod* requires division with rest
- Special prime of Curvel174
 - Recursion necessary
 - Only works for $X \le 2^{256}$
- Binary search with precomputed values
 - Search a ∈ [1, 32] s.t. 0 ≤ X aq < q

$$egin{aligned} q &= 2^{251} - 9 \ &\Rightarrow 2^{251} - 9 \equiv_q 0 \ &\Rightarrow 2^{256} \equiv_q 288 \end{aligned}$$

$$egin{aligned} X \in \{0,1\}^{512} \ X = X_1 \cdot 2^{256} + X_0 \ = X_1 \cdot 288 + X_0 \end{aligned}$$

Algorithmic Optimizations – Square

- Special case of multiplication
 - Reduce memory access
 - Only one operand
 - Can save around half the chunk multiplications

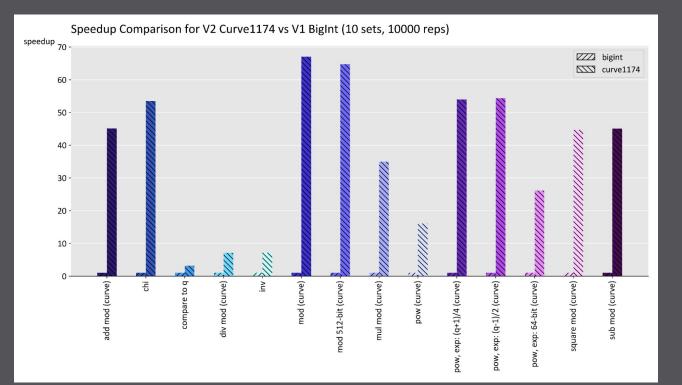
			a _o a ₃	a _o a ₂	a _o a ₁	a _o a _o
		a ₁ a ₃	a ₁ a ₂	a _l al	a ₁ a ₀	
	a ₂ a33	a ₂ a2	a ₂ a1	a ₂ a ₀		
a ₃ a3	a ₃ a ₂	a ₃ a1	a ₃ a0			

Algorithmic Optimizations – special pow

- Multiple special power operations
 - Chi: χ(a) = a^{(q-1)/2}
 - Inverse mapping: **a**^{(q+1)/4}
 - Fermat inverse: $a^{-1} \equiv a^{q-2} \pmod{q}$
- Exponents have prefix of 'ones':
 - (q-1)/2 = 0b1111...11111011 (247 ones in prefix)
 - (q+1)/4 = 0b111111...111110 (248 ones in prefix)
 - q-2 = 0b11111...1110101 (247 ones in prefix)
- Ensure suffix separately
- Remove branching from square-and-multiply
- Enables AVX optimizations (later)

 $egin{aligned} \mathtt{pow}(b,e):\ r=1\ & ext{while } \mathrm{e} > 0\ & ext{if } \mathrm{e} \ \& 1\ & ext{$r\equiv_q$} \ r\cdot b\ & ext{$b\equiv_q$} \ b^2\ & ext{$e=e/2$} \end{aligned}$

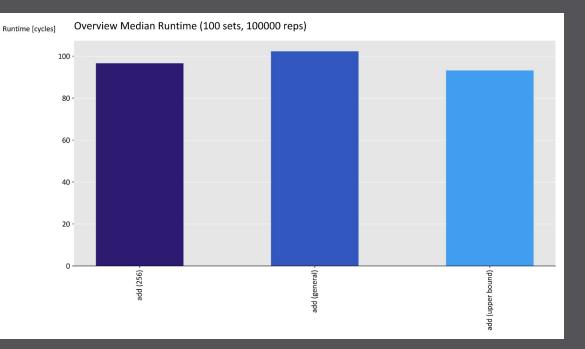
Algorithmic Optimizations – speedup



Vector Optimizations

AVX add, sub, mul

- Little benefit
- Carries
 - Manually over lanes
 - Needs #chunks ops
- Data movement
 - \circ Costly in AVX



AVX mul 4 indep. inputs

- Linear dependency for square operations
- Result can use four variables r₁, r₂, r₃, r₄ for independent partial products
- Combine at end $r = r_1 \times r_2 \times r_3 \times r_4$
- Loop unrolling to avoid aliasing

```
for (uint32_t i = 0; i < 30; ++i) {</pre>
   big_int_curve1174_square_mod(b_0_0, b_3_1);
   big_int_curve1174_square_mod(b_1_0, b_0_0);
   big_int_curve1174_square_mod(b_2_0, b_1_0);
   big_int_curve1174_square_mod(b_3_0, b_2_0);
   big int curve1174 mul mod 4(
       r_0_0, r_1_0, r_2_0, r_3_0,
       r_0_1, r_1_1, r_2_1, r_3_1,
       b_0_0, b_1_0, b_2_0, b_3_0
   big_int_curve1174_square_mod(b_0_1, b_3_0);
   big_int_curve1174_square_mod(b_1_1, b_0_1);
   big_int_curve1174_square_mod(b_2_1, b_1_1);
   big_int_curve1174_square_mod(b_3_1, b_2_1);
   big_int_curve1174_mul_mod_4(
       r_0_1, r_1_1, r_2_1, r_3_1,
       r_0_0, r_1_0, r_2_0, r_3_0,
       b_0_1, b_1_1, b_2_1, b_3_1
```

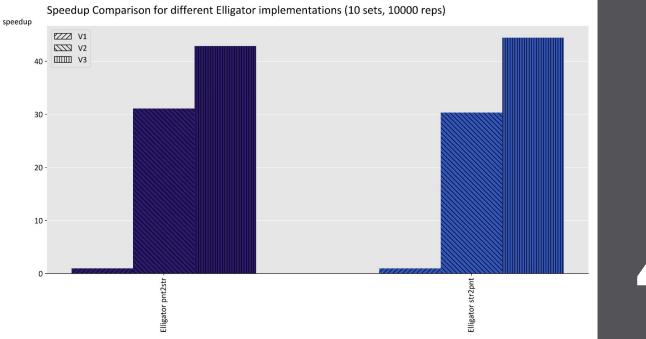
AVX *mul* 4 indep. inputs

- Pack data
 - The same chunk from 4 different BigInts are adjacent
- Do the normal mul algorithm with vector instructions
 - No need to move data horizontally
- Unpack the data

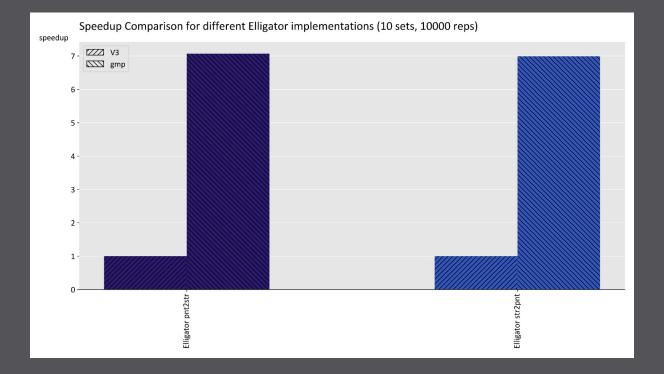
- Moderate speed
 - Packing/Unpacking is an overhead

Conclusion

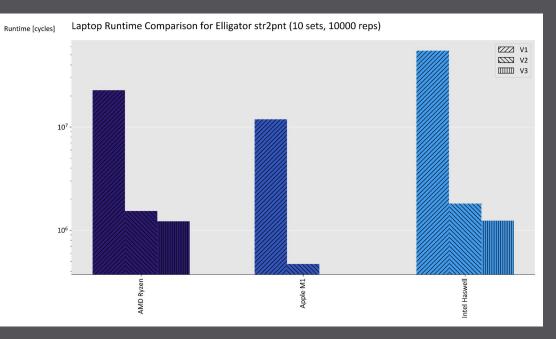
Overall speedup



Comparison to GMP



Laptop Comparison



• Devices:

- MacBook Pro Mid 2015 with Intel Haswell i7-4980HQ 2.8 GHz, native clang
- MacBook Pro 2020 with Apple M1, native clang
- AMD Ryzen 9 3900X @4.1GHz, Win10 WSL Ubuntu and gcc