A Formal Treatment of End-to-End Encrypted Cloud Storage

Matilda Backendal¹, Hannah Davis², Felix Günther³, Miro Haller⁴, Kenny Paterson¹

¹ETH Zurich , ²Seagate Technology, ³IBM Research Zurich, ⁴UC San Diego

Cloud Storage

Benefits:

- + Availability
- + Redundancy
- + Scalability

Concerns:

Data leaks to third party=> SERVER-SIDE ENCRYPTION

Cloud Storage

Benefits:

- + Availability
- + Redundancy
- + Scalability

Concerns:

- Data leaks to third party=> SERVER-SIDE ENCRYPTION
- Malicious server
 - => END-TO-END ENCRYPTION

https://www.hipaajournal.com/healthcare-cloud-usagegrows-but-protecting-phi-can-be-a-challenge/

E2EE Cloud Storage Providers

"FREE, ENCRYPTED, AND SECURE CLOUD STORAGE.
YOUR PRIVACY, SECURED BY MATH"

"EXCEPTIONALLY PRIVATE CLOUD"

"THE STRONGEST ENCRYPTED CLOUD STORAGE IN THE WORLD"

"EUROPE'S MOST SECURE CLOUD STORAGE"

"SUPPORTS CLIENT-SIDE END-TO-END ENCRYPTION"

Challenges:

- 1 Stateless clients
- 2 No ciphertext integrity
- 3 Key recovery attacks [1,2]
- 4 Key reuse
- 5 File re-encryption infeasible
- 6 PKE has no authentication [3]

[1] Matilda Backendal, Miro Haller and Kenneth G. Paterson. (2023). "MEGA: Malleable Encryption Goes Awry". IEEE S&P 2023.

[2] Martin R. Albrecht, Miro Haller, Lenka Mareková, Kenneth G. Paterson. (2023). "Caveat Implementor! Key Recovery Attacks on MEGA". Eurocrypt 2023.

[3] Martin R. Albrecht, Matilda Backendal, Daniele Coppola, Kenneth G. Paterson. (2024). "Share with Care: Breaking E2EE in Nextcloud". Euro S&P 2024.

... is surprisingly hard!

Challenges:

- 1 Stateless clients
- 2 No ciphertext integrity
- 3 Key recovery attacks [1,2]
- 4 Key reuse
- 5 File re-encryption infeasible
- 6 PKE has no authentication [3]

[1] Matilda Backendal, Miro Haller and Kenneth G. Paterson. (2023). "MEGA: Malleable Encryption Goes Awry". IEEE S&P 2023.

[2] Martin R. Albrecht, Miro Haller, Lenka Mareková, Kenneth G. Paterson. (2023). "Caveat Implementor! Key Recovery Attacks on MEGA". Eurocrypt 2023.

[3] Martin R. Albrecht, Matilda Backendal, Daniele Coppola, Kenneth G. Paterson. (2024). "Share with Care: Breaking E2EE in Nextcloud". Euro S&P 2024.

Implications:

- Design issues 2
- Key distribution problem

... is surprisingly hard!

Challenges:

- 1 Stateless clients
- 2 No ciphertext integrity
- 3 Key recovery attacks [1,2]
- 4 Key reuse
- 5 File re-encryption infeasible
- 6 PKE has no authentication [3]

[1] Matilda Backendal, Miro Haller and Kenneth G. Paterson. (2023). "MEGA: Malleable Encryption Goes Awry". IEEE S&P 2023.

[2] Martin R. Albrecht, Miro Haller, Lenka Mareková, Kenneth G. Paterson. (2023). "Caveat Implementor! Key Recovery Attacks on MEGA". Eurocrypt 2023.

[3] Martin R. Albrecht, Matilda Backendal, Daniele Coppola, Kenneth G. Paterson. (2024). "Share with Care: Breaking E2EE in Nextcloud". Euro S&P 2024.

Implications:

- Design issues 2
- Key distribution problem
- Password-based security

... is surprisingly hard!

Challenges:

- 1 Stateless clients
- 2 No ciphertext integrity
- 3 Key recovery attacks [1,2]
- 4 Key reuse
- 5 File re-encryption infeasible
- 6 PKE has no authentication [3]

[1] Matilda Backendal, Miro Haller and Kenneth G. Paterson. (2023). "MEGA: Malleable Encryption Goes Awry". IEEE S&P 2023.

[2] Martin R. Albrecht, Miro Haller, Lenka Mareková, Kenneth G. Paterson. (2023). "Caveat Implementor! Key Recovery Attacks on MEGA". Eurocrypt 2023.

[3] Martin R. Albrecht, Matilda Backendal, Daniele Coppola, Kenneth G. Paterson. (2024). "Share with Care: Breaking E2EE in Nextcloud". Euro S&P 2024.

Implications:

- Design issues 2 4
- Key distribution problem
- Password-based security
- File sharing causes complex interactions
- Need to get it right the first time

E2EE Cloud Storage Providers

"FREE, ENCRYPTED, AND SECURE CLOUD STORAGE.
YOUR PRIVACY, SECURED BY MATH"

Proton Drive

"EXCEPTIONALLY PRIVATE CLOUD"

"THE STRONGEST ENCRYPTED CLOUD STORAGE IN THE WORLD"

"EUROPE'S MOST SECURE CLOUD STORAGE"

pCloud

"SUPPORTS CLIENT-SIDE END-TO-END ENCRYPTION"

Why Is It Hard?

Why Is It Hard?

Why Is It Hard?

Contributions

A Formal Treatment of End-to-End Encrypted Cloud Storage

Matilda Backendal, Hannah Davis, Felix Günther, Miro Haller, and Kenneth G. Paterson

- 1 Formal Model
- Syntax
- Security games

- 2 Construction
- CSS (Cloud Storage Scheme)
- Security proofs

1. Formalizing E2EE Cloud Storage

Formalizing E2EE Cloud Storage

Model Goals

Capture existing systems

1 Expressive

Capture *real-world* systems

2 Faithful

Capture future systems

3 Generic

Syntax

WHAT MAKES A CLOUD STORAGE A CLOUD STORAGE?

Core Functionality

- Register (create account)
- Authenticate (log in)
- Put (upload a file)
- Update (modify content)
- Get (download)
- Share
- Accept (receive share)

Syntax

HOW DO WE MAKE THE MODEL USEFUL?

Core Functionality

- Register (create account)
- Authenticate (log in)
- Put (upload a file)
- Update (modify content)
- Get (download)
- Share
- Accept (receive share)

Model Choices

Arbitrary interleaving

Syntax

HOW DO WE MAKE THE MODEL USEFUL?

Security Notions

MALICIOUS SERVER SETTING

Threat model:

- Malicious cloud provider
- Trusted OOB-channels between honest users
- Trusted client code

Adversary capabilities:

- Control client protocol steps (which & when)
- Specify server responses
- Guess honest user passwords
- Compromise users (adaptive/selective)

Security Notions

MALICIOUS SERVER SETTING

Integrity:

- Wins if adversary can, for an honest user,
 - 1. inject a file, or
 - 2. modify a file.

MALICIOUS SERVER SETTING

Integrity:

- Wins if adversary can, for an honest user,
 - inject a file, or
 - modify a file.

Confidentiality:

- Wins if adversary can, for an honest user,
 - learn any information and distinguish files

IND-CCA-STYLE GAME

INT-PTXT-STYLE GAME

MALICIOUS CLIENT SETTING [ONGOING WORK]

Threat model:

- Malicious honest cloud provider, malicious clients
- Trusted OOB-channels between honest users
- Trusted client code
- + Trusted client-to-server channels?

Adversary capabilities:

- Control client protocol steps (which & when)
- Specify server responses
- Guess honest user passwords
- Compromise users (adaptive/selective)

Additional goals:

- Authentication & authorization
- No offline dictionary attacks on pw
- Availability for honest user files

Are We Done?

- Syntax ✓
- Security notions ✓

Are We Done?

Syntax ✓ Security notions ✓ CONFIDENTIALITY < INTEGRITY 🗸 Construction FORMALLY BROKEN sync.com "CSS" EZEE CLOUD STORAGE "CSS" MEGA

2. Constructing E2EE Cloud Storage

Building Blocks

$$\begin{split} & \text{STORE} \\ & \textit{User}[\textit{aid}] \leftarrow k_{\textit{S}}, k_{\text{mac}}, \left[\!\!\left[k_{\text{mk}}\right]\!\!\right] \end{split}$$

Put

STORE
$$File[fid] \leftarrow [file]$$
 SHARED UNIQUE $Key[aid, fid] \leftarrow [k_f]$ PER USER

Share

*SIMPLIFIED RECIPIENT ACCOUNT ID $\frac{\text{Client }(fid, raid)}{\text{Client }(fid, raid)}$

 k_{mk} , $sid \leftarrow Cache$

sid, fid, raid

 $\left[\begin{array}{c} k_{\mathsf{f}} \end{array}\right]$

<u>Server</u>

FETCH $aid \leftarrow Session[sid]$ $[k_f] \leftarrow Key[aid, fid]$

Accept

*SIMPLIFIED

<u>Server</u>

FETCH

 $aid \leftarrow Session[sid]$

STORE

 $Key[aid, fid] \leftarrow [k_f]$

Conclusion

- E2EE cloud storage in practice:
 - Plagued by attacks
- E2EE cloud storage in theory
 - Novel security notions
 [BDGHP24]
 - CSS
- Future work
 - Adaptive security proof
 - Large-scale deployment
 - Prove existing E2EE cloud storage secure

A Formal Treatment of End-to-End Encrypted Cloud Storage

Matilda Backendal, Hannah Davis, Felix Günther, Miro Haller, Kenny Paterson mbackendal@inf.ethz.ch
mhaller@ucsd.edu

eprint.iacr.org/2024/989

