A Formal Treatment of End-to-End Encrypted Cloud Storage

Matilda Backendal¹, Hannah Davis², Felix Günther³, Miro Haller⁴, Kenny Paterson¹

¹ETH Zurich , ²Seagate Technology, ³IBM Research Zurich, ⁴UC San Diego

Cloud Storage

Benefits:

- + Availability
- + Redundancy
- + Scalability

Concerns:

Data leaks to third party=> SERVER-SIDE ENCRYPTION

Cloud Storage

Benefits:

- + Availability
- + Redundancy
- + Scalability

Concerns:

- Data leaks to third party=> SERVER-SIDE ENCRYPTION
- Malicious server
 - => END-TO-END ENCRYPTION

https://www.hipaajournal.com/healthcare-cloud-usagegrows-but-protecting-phi-can-be-a-challenge/

E2EE Cloud Storage

AMNESTY INTERNATIONAL,
THE GERMAN FEDERAL GOVERNMENT
& ETH

"ULTIMATE SECURITY"

[EuroSP:ABCP23]

Nextcloud

"EXCEPTIONALLY PRIVATE CLOUD"

"THE STRONGEST ENCRYPTED CLOUD STORAGE IN THE WORLD"

(DERIVE KEYS FROM THE PASSWORD!)

- 1 key distribution
- 2 password-based security

PROBLEM 1: PW CHANGE

DERIVE KEYS FROM THE PASSWORD!

WHAT IF THE PASSWORD CHANGES?

- 1 key distribution
- 2 password-based security

PROBLEM 1: PW CHANGE PROBLEM 2: SHARING DERIVE KEYS FROM THE PASSWORD! HOW DO YOU SHARE FILES? key distribution 1 password-based security 3 file sharing

(BUILD A KEY HIERARCHY!

- 1 key distribution
- password-based security
- 3 file sharing

USE SECURE MESSAGING TECHNIQUES!

HOW TO PROTECT DATA AT REST?

- 1 key distribution
- password-based security
- 3 file sharing
- 4 persistent data

A CASE STUDY OF CRYPTOGRAPHY IN THE WILD

MEGA's challenges

- 1 Multi-device access \longrightarrow USERS ONLY NEED TO REMEMBER PW
- 2 File re-encryption → REPLACING AES-CCM > 180 DAYS
- 3 Ciphertext integrity → ENABLES ATTACKS IN [1, 2]
- 4 File sharing \longrightarrow RSA SECRET KEY DECRYPTION [2]
- 5 Key reuse → FILE KEY DECRYPTION [1]

[1] Matilda Backendal, Miro Haller* and Kenneth G. Paterson. (2023). "MEGA: Malleable Encryption Goes Awry" IEEE S&P 2023.

[2] Martin R. Albrecht, Miro Haller, Lenka Mareková*, Kenneth G. Paterson. (2023). "Caveat Implementor! Key Recovery Attacks on MEGA" Eurocrypt 2023.

MEGA's key hierarchy*

Contributions

A Formal Treatment of End-to-End Encrypted Cloud Storage

Matilda Backendal, Hannah Davis, Felix Günther, Miro Haller, and Kenneth G. Paterson

- 1 Formal Model
- Syntax
- Security games

- 2 Construction
- CSS (Cloud Storage Scheme)
- Security proofs

1. Formalizing E2EE Cloud Storage

Formalizing E2EE Cloud Storage

Model Goals

Capture existing systems

1 Expressive

Capture *real-world* systems

2 Faithful

Capture future systems

3 Generic

Syntax

WHAT MAKES A CLOUD STORAGE A CLOUD STORAGE?

Core Functionality

- Register (create account)
- Authenticate (log in)
- Put (upload a file)
- Update (modify content)
- Get (download)
- Share
- Accept (receive share)

Syntax

HOW DO WE MAKE THE MODEL USEFUL?

Core Functionality

- Register (create account)
- Authenticate (log in)
- Put (upload a file)
- Update (modify content)
- Get (download)
- Share
- Accept (receive share)

Model Choices

Arbitrary interleaving

Syntax

HOW DO WE MAKE THE MODEL USEFUL?

Security Notions

CLIENT-TO-CLIENT (C2C): MAL. SERVER

Threat model:

- Malicious cloud provider
- Full control over network & operations

Game mechanics:

- Correlated passwords
- Adversary can
 - Compromise users (adaptive/selective)
 - Control users (via oracles)
 - Control server (directly)

Security Notions

CLIENT-TO-CLIENT (C2C): MAL. SERVER

Integrity:

- Adversary simulates interaction
- Wins if it can, for an honest user,
 - 1. inject a file, or
 - 2. modify a file.

Security Notions

CLIENT-TO-CLIENT (C2C): MAL. SERVER

Integrity:

- Adversary simulates interaction
- Wins if it can, for an honest user,
 - 1. inject a file, or
 - 2. modify a file.

Confidentiality:

- Additional challenge oracle
 - Submit two files f_0 , f_1
 - File f_b is uploaded
 - Guess bit *b*

Security Notions: Considerations

Integrity:

- Adversary simulates interaction
- Wins if it can, for an honest user,
 - 1. inject a file, or
 - 2. modify a file.

Confidentiality:

- Additional challenge oracle
 - Submit two files f_0 , f_1
 - File f_b is uploaded
 - Guess bit *b*

- 1 No generic ciphertexts
- $\, \hookrightarrow \,$ allows generic syntax
- 2 Adaptive & selective compromises
- AVOIDS COMMITMENT ISSUES
- 3 UC vs. game-based notions
- UC SECURE CHANNEL TECHNIQUES DO NOT APPLY

CLIENT-TO-SERVER (C2S): MAL. CLIENT [ONGOING WORK]

Threat model:

- Honest server
- Malicious clients
- Adversary controls honest user operations

INFEASIBLE IN C2C!

Additional goals:

- Authentication & authorization
- No offline dictionary attacks on pw
- Availability for honest user files

- Syntax ✓
- Security notions ✓

Security notions
 Construction
 C

2. Constructing E2EE Cloud Storage

Building Blocks

STORE

$$User[aid] \leftarrow k_s, k_{mac}, [k_{mk}]$$

32

Put

STORE
$$File[fid] \leftarrow [file] \qquad \qquad \text{SHARED} \\ Key[aid, fid] \leftarrow [k_{\text{f}}] \qquad \qquad \text{PER USER}$$

Share

*SIMPLIFIED RECIPIENT ACCOUNT ID

Client (fid, raid)

 k_{mk} , $sid \leftarrow Cache$

sid, fid, raid

 $\lceil k_{\scriptscriptstyle \mathsf{f}}
ceil$

<u>Server</u>

FETCH

 $aid \leftarrow Session[sid]$

 $[k_f] \leftarrow Key[aid, fid]$

Accept

*SIMPLIFIED

<u>Server</u>

FETCH

 $aid \leftarrow Session[sid]$

STORE

 $Key[aid, fid] \leftarrow [k_f]$

- Syntax ✓
- Security notions ✓
- Construction ✓

CONFIDENTIALITY <

INTEGRITY 🗸

- Syntax ✓
- Security notions ✓
- Construction ✓

37

- Syntax ✓
- Security notions ✓
- Construction √

Still missing:

Adaptive security proof

- Syntax ✓
- Security notions ✓
- Construction ✓

Still missing:

- Adaptive security proof
- Implementation
- Feedback, model extensions, ...

A Formal Treatment of End-to-End Encrypted Cloud Storage

Matilda Backendal,Hannah Davis,Felix G识的证明[例ro Haller,Kenny Paterson

mbackendal@inf.ethz.ch

eprint.iacr.org/2024/989

