
Climbing the
Hacking /mnt/ain

By Anthony Schneiter and Miro Haller

🏔

What’s ECSC?

What’s ECSC?

• ECSC: European Cyber Security Challenge
• Interna4onal compe44on with 20 countries
• Promote young cyber security talents (<= 25)

• SHC: Swiss Hacking Challenge
• Organizes the selec4on of the Swiss team for

ECSC

National selection + training

|----------|----------|----------|----------|----------|----------|----------|

March April May June July August September

⛳
phase 1: online qualifier

👪
phase 2: team CTF

🏋
ECSC team training

🚀
ECSC

21

Phase 1:
Online Qualifier |----------|----------|----------|

March April MaY

⛳
phase 1: online qualifier

challenges: web 🌎, crypto 🧮, reverse engineering 🔎, …

par<cipants solved challenges

move on to phase 2

200+

16

Phase 2: Team ctf
|----------|----------|

June July

👪
phase 2: team CTF

• 4 teams with 4 people each
• 1 month prepara<on <me un<l the SHC Finals 2021
• 1 CTF challenge per person

• 1 easy, 2 medium, 1 hard per team
• Different categories

à 16 CTF challenges @ SHC Finals 2021
+ 4 admin challenges!

SHC Final 2021

SHC Final 2021

SHC Final 2021

🥇 🥈

🥉 ❤

ECSC Team Training
|----------|----------|----------|

July August September

🏋
ECSC team training

• Playing lots of CTF!
• CTFZone: Rank 11

• UIUCTF: Rank 5

• RaRCTF: Rank 6

• 📍 Really Awesome CTF 2021: Rank 2

• 📍 corCTF 2021: Rank 10

• FwordCTF 2021: Rank 10

• ALLES! CTF 2021: Rank 9

• CSAW CTF QualificaGon Round 2021: Rank 9

Ranking (in less than 3 months ⚠):

🇨🇭
🌎

top 3

top 100 (place 86)

Fun + Team Bulding
|----------|----------|----------|

July August September

🏋
ECSC team training

ECSC Prague 2021
|----------|

September

🚀
ECSC

• 19 countries par<cipa<ng
• 2 days CTF
• Connect and exchange with others

ECSC prague 2021

ECSC prague 2021

ECSC prague 2021
|----------|

September

🚀
ECSC

• Hard compe<<on
• 4th six hours

before the end
• 11th in the end

Lets hack!

Who am i?

• Anthony Schneiter / muffinx
• Participated 4 times @ European Cyber Security Challenge
• Trainer of Swiss National Hacking Team /mnt/ain
• Passionate CTF Player
• Cyber Security Researcher @ suid.ch
• Medical Computer Science / Bioinformatics Student

• Hire me!⭐

Challenge: Unintended

• Category: Pwn (Binary Exploitation)
• Files provided:

• unitended (ELF x64 binary)
unintended: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, interpreter ./lib/ld-2.27.so, for GNU/Linux
3.2.0, BuildID[sha1]=7bfb2bb322e2565ed3891924c6fd5daeca9bd5f1, not stripped

• lib/ folder with ld-2.27.so & libc.so.6
• ld-2.27.so: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, BuildID[sha1]=977c39fe87abfa426d3043f6c8e21f7be3f0e876, stripped
• libc.so.6: ELF 64-bit LSB shared object, x86-64, version 1 (GNU/Linux), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2,

BuildID[sha1]=ce450eb01a5e5acc7ce7b8c2633b02cc1093339e, for GNU/Linux 3.2.0, not stripped

• Target 🎯 :
IP: 193.57.159.27
Port: 52018

• Goal 🥅 : Exploit vulnerability in binary on the remote host to get a shell, leak
flag.txt

Unitended: binary

Quick analysis
• Binary Security Settings:

• + We assume that ASLR is activated (as always)
• Quick Statical Analysis shows:

• Application uses Heap for saving Data
• Usage of malloc() and free()

• = Heap Exploitation Challenge
• Our Goal:

• Leak location of binary / libc
• Overwrite some pointer to redirect execution
• Redirect execution into /bin/sh one-gadget

Exploitation Environment
• Statical Analysis:

• Your favourite disassembler
(IDA Pro? Ghidra? Radare2?)

• Generate pseudcode <3

• Dynamic Analysis:

• Using gef (plugin for gdb, for better heap exploitation)
• Scripting (Exploit Development):

• python
• pwntools

• gdb.attach() for fast debugging (dynamic analysis)
• Address packing & unpacking
• ELF symbol resolving
• Communication Wrappers like process(), remote() and sertialtube()
• etc.

Heap refresher 1/2

• Heap?
• Space in memory where we can dynamically request

memory from
• malloc()

• Function to allocate bytes, return address of heap
memory

• Example: malloc(1024) → Allocates 1024 bytes on the
heap

• free()
• Function to „free“ heap memory = Marking heap

memory to be used again
• char* test = malloc(1024);
• free(test);

Heap refresher 2/2
• Important terminologies:
• main_arena (malloc_state struct)

• Data Structure which holds heap metadata
• bin(s)

• many different bins (depends on size of chunk):
• fastbins
• t-cache Bins
• etc.

• doubly linked list of freed-chunks

• chunk
• memory heap space
• different data structure when freed (fd & bk pointers)

chunk 1 chunk 2 chunk 3

Exploit the heap?

• „House“ - Techniques
• Example: „House of Rust“
• Highly version specific
• Esoteric techniques „micromanaging“ malloc() and

free() to enable exploitation

• Exploit Data on the Heap
• Exploit Data on the Heap with: UAF (Use-After-

Frees), Heap Overflows, Heap Spraying etc.
• High Value: Pointers!

This Talk!

Make challenge
● Menu: 1.) Make Challenge

malloc 60 bytes
at challenges

Read category (16 bytes)
Read name (16 bytes)
(2 strings)

Get description lenght
malloc(desc_len)
(1 pointer) ⚠🤔

Challenges?

• challenges:
• 10 x Q-Word (8 bytes)
• In the BSS segment:

Patch challenge
● Menu: 2.) Patch Challenge

Only challenge with category
„web“ can be patched
(CTF scene inside joke 😏)

Patching = Read in new description

Reduce CTFTime Rating
(another CTF scene inside joke😏)

Ctftime rating

• ctftime_rating:
• On the data segment:

• if ctftime_rating too low:
• exit application

deploy challenge

● Menu: 3.) Deploy Challenge

Print challenge name and description

Interesting:
Can be maybe
used as an
information leak? 🤔

Take down challenge
● Menu: 4.) Take down challenge

Free Challenge

Reduce ctftime_rating

Do nothing

•Menu: 5.) Do nothing
• It exits the program:

What‘s our goal? 🥅
• Steps:

• 1.) Leak libc address
• 2.) Write an address to redirect execution
• Candidates:

• __malloc_hook: Executes when malloc() is called
• __free_hook: Executes when free() is called
• __exit_hook: Executes when exit() is called

• 3.) Jump to a one-gadget
• one-gadget: Place in libc to jump into which calls

system(„/bin/sh“) for us
• Alternative: Jump to shellcode (on heap):

NOT POSSIBLE: NX is ON

Start scripting 1/2

• Create python (pwntools) wrapper functions:
• Example: Make Challenge

Start scripting 2/2

• Create Dynamic Analysis
/ Debugging Capabilities:

• Example: gdb.attach()

GDB Commands

Step 1: off-by-one 1/3
• Menu: 2.) Patch Challenge reads 1 byte too much → Off-By-One Attack

1 byte
overflow

Step 1: off-by-one 2/3

● We have successfully overwritten prev_size & prev_inuse) of the next chunk!

prev_size &
prev_inuse

Step 1: off-by-one 3/3

• Result:
• Heap Chunk Number 5 marks now that Heap Chunk Number 4

is:
• (prev_inuse) in use = 0 (candidate for coalescing) 💥
• (prev_size) size = 0xA0 = 160 bytes (bigger) 💥

• Effect:
• Heap Layout is different 😈
• Pointers spawn on Heap (+Move around Pointers) 😈
• Overwrite values 😈
• Possible UAF = Use After Free 😈
• etc.

Step 2: leak heap adress
● Allocate another chunk!

● Now name of Chunk Number 6 is a heap address:

Step 3: leak some more!

• After Heap Consolidation we can now overwrite a challenge description pointer (Arbitary Read)
and leak values

• 1.) To get main_arena:
• main_arena_ptr_location = leak_heap_addr – 0x640

• 2.) Leak Main Arena → Recieve Libc Addresses

Step 4: write! 1/2
● After the Heap Coalescing: We can overwrite pointers with a Heap

Overflow, lets over write another challenge‘s description pointer:

● _dl_rtld_unlock_recursive is __exit_hook

Step 4: write! 2/2
• Lets write to __exit_hook the address of the one-gadget:

• Run exit() → /bin/bash executed !!!

Exploit!

• Execute exploit targetting the remote host and get flag:

• Challenge solved!

Resources

• Images:
• hRps://ecsc2021.cz/?lang=en, 25.07.2021
• Official images from ECSC CZ, hRps://ecsc2021.cz/photo-gallery/

• Memes:
• hRps://imgflip.com/memegenerator/48003957/black-guy-ques4on-mark
• hRps://tenor.com/view/oh-really-hmph-surprised-gif-18286648

