
On Performing Accurate Time
Measurements of SGX Enclave

Instructions

Bachelor Thesis

M. Haller

June 6, 2019

Advisors: Prof. Dr. S. Capkun, I. Puddu, M. Schneider

Department of Computer Science, ETH Zürich

Abstract

SGX enclaves allow to securely execute a program on hardware owned
by an untrusted entity. Since precise timestamps are not available in-
side enclaves and not even the OS can manipulate their computations,
it is difficult to measure the timings of instructions executing inside
enclaves. This thesis serves as a reference on how to obtain accurate
timings in general and especially in connection with SGX enclaves. We
explain a variety of improvements and new features that we contribute
to an existing measurement framework in detail such that the result-
ing tool can be used for further research. By improving the instruction
granular time measurements of SGX enclaves, we show that even more
detailed information about the enclave’s execution state can be leaked
than previously assumed. We demonstrate the capabilities of our mea-
surement framework by exploiting a timing side channel that is only
caused by code alignment, which was not detectable with previous
measurement methods.

i

Contents

Contents iii

1 Introduction 1

2 Background 3
2.1 SGX Enclaves . 3

2.1.1 Threat Model . 3
2.1.2 Technical Overview . 4

2.2 SGX-Step: Framework for Precise Enclave Execution Control . 5
2.2.1 Brief Overview of How SGX-Step Works 5
2.2.2 APIC Timer Interval . 7
2.2.3 Filtering Zero-Steps . 7
2.2.4 Interrupt Handling and Exceptions 8

3 Measurement Setup and Methods 9
3.1 General Setting . 9
3.2 Precise Time Measurement . 10

3.2.1 Time-Stamp Counter . 10
3.2.2 Reducing Noise . 12

3.3 Measurement Methods . 12
3.3.1 Background Information and Terminology 13
3.3.2 Outside Enclave . 14
3.3.3 Interrupt Method . 14
3.3.4 Counter Method . 15
3.3.5 Overview over all Measurement Methods 17

3.4 Plot types . 17
3.4.1 Histogram of Test Instructions 19
3.4.2 Histogram of Prepare and Test Instructions 20
3.4.3 Measurements-over-Time Plot 21
3.4.4 Bar Plot . 22

iii

Contents

4 11 Challenges Towards Precise Measurement 25
4.1 Challenge 1: Incomparability of Different Enclaves 25
4.2 Challenge 2: Measuring Across Page Borders 26
4.3 Challenge 3: Cache Conflicts 30
4.4 Challenge 4: Constant Time Measurement Code 31
4.5 Challenge 5: Imprecise APIC Timer 33
4.6 Challenge 6: Keeping Track of Instructions 35
4.7 Challenge 7: Verifying Tests . 37
4.8 Challenge 8: Setting Flags . 39
4.9 Challenge 9: Writing to Memory 41
4.10 Challenge 10: Two Noise Sources 43
4.11 Challenge 11: Synthetic State on AEX 46

5 Applications 49
5.1 Double Peaks on Memory Write 49
5.2 Poor Man’s cmov . 60

6 Conclusion and Related Work 67
6.1 Comparing with SGX-Step . 67
6.2 Further research . 68

Bibliography 71

A Serializing With lfence and sfence 75

iv

Chapter 1

Introduction

SGX enclaves should enable someone to securely execute a program on hard-
ware owned by an untrusted entity. Securely means that the third party
neither is able to tamper with the computation nor to learn anything new
about the executed program or its result. The SGX instruction set is widely
available as it is shipped in Intel’s standard CPUs, from the generation Sky-
lake onwards. There are many commercial products that use SGX enclaves,
for example IBM Cloud [17], Microsoft Azure Confidential Computing [22]
and 1Password [13]. Moreover, the research in this area is very active, for
instance Tesseract (a real-time cryptocurrency exchange service that uses
trusted hardware) [4] or SCONE (secure linux containers using SGX) [3] to
only name a few. Since a lot of these works rely on the security of SGX
enclaves by building services on top of them, it is important to test and
challenge the safety of SGX enclaves.

We will focus on time side channels against enclaves. In this area it was al-
ready shown that information can be leaked by exploiting page tables ([27])
or CPU caches ([5], [19]). Nemesis ([7]) contributed a side-channel exploit-
ing interrupts (using SGX-Step, see chapter 2.2). We will build on the latter
to leak more information about the microarchitectural state of SGX enclaves
by improving and extending SGX-Step to obtain more precise timings.

In this thesis we will first refresh the relevant technical background informa-
tion on SGX enclaves and explain the SGX-Step framework in sections 2.1
and 2.2. Then, in chapter 3, we show in detail what features we added – ex-
amples are other methods to cross-check measurement results (section 3.3)
and different plot types to inspect the data from multiple perspectives (sec-
tion 3.4) – and how we measure instructions. After this we discuss in chap-
ter 4 eleven challenges to make precise measurements inside enclaves and
present for each one how we extended SGX-Step to cope with it. Many chal-
lenges also provide instructive insights into the microarchitecture of Intel
processors. Furthermore, we apply our improved tool in chapter 5 to inves-

1

1. Introduction

tigate an interesting behaviour in connection with memory writes. Then we
use those insights to exploit a side channel based on code alignment (which
in turn changes instruction timings) in section 5.2. To conclude, we summa-
rize our improvements and extensions of the SGX-Step measurement tool
(section 6.1) and discuss possible further research directions (section 6.2).

2

Chapter 2

Background

In this chapter we first explain the threat model of SGX enclaves. Then we
briefly introduce the technical details that are relevant for this thesis before
we discuss how the SGX-Step framework – the essential building block for
measuring instructions inside enclaves – works.

2.1 SGX Enclaves

Intel’s Software Guard Extensions, often abbreviated as SGX, are a ‘set of
extensions to the Intel architecture that aims to provide integrity and con-
fidentiality guarantees to security-sensitive computation performed on a
computer where all the privileged software (kernel, hypervisor, etc) is po-
tentially malicious’ [10]. The goal of SGX is therefore to enable someone to
securely execute a program on hardware owned by an untrusted entity.

2.1.1 Threat Model

SGX Enclaves should isolate their content and computations from the rest
of the system, including the operating system itself. The goal is to run
trusted code on a remote, untrusted system. This threat model is stronger
than usual and allows an attacker to configure or even modify the OS. We
will see that the SGX-Step framework takes advantage of this by using spe-
cial BIOS settings, raising interrupts, modifying the Intel SGX SDK (just for
convenience) and even introducing a kernel module.

Iago Attacker. This term was coined in [8] and is used for a malicious
kernel that attacks a trusted application that it cannot modify directly. SGX
enclaves provide such an execution environment that is protected (through
hardware design) from direct access – even from high privileged OS instruc-
tions.

3

2. Background

2.1.2 Technical Overview

Much of this subsection is based on information from the paper ‘Intel SGX
Explained’ by V. Costan and S. Devadas [10] which does a great job in col-
lecting and summarizing public documentation about SGX.

SGX Enclave. SGX relies on ‘trusted hardware’1 to provide a secure con-
tainer for the user’s computation, a so called enclave. Although the untrusted
hardware owner loads the initial code and data of the enclave, a malicious
configuration would be detected during the software attestation. After au-
thenticating the enclave, the user communicates over an encrypted channel
which is unreadable for attackers (even for the hardware owner himself).
SGX has some reserved memory, that is separated from the normal one and
can only be accessed from inside an enclave (i.e. even a malicious OS cannot
read this memory).

Software Attestation. Software attestation is the process where a remote
entity proves to a verifier that some particular code is running in a genuine
execution environment. Without attestation the owner could create a mali-
cious enclave that does not hide its content.

Paging. Part of the enclave-exclusive memory is the Enclave Page Cache
(EPC). The page content is cryptographically protected to avoid leaks and
tampering. However, the untrusted OS manages the EPC and can mali-
ciously evict pages or set the flags of entries to its advantage, which proves
to be useful for SGX-Step as we will see in chapter 2.2.

Entry and Exit. The three instructions relevant for this thesis are: EENTER,
EEXIT and ERESUME. The first, EENTER, prepares the enclave execution
and enters it by setting the processor to ‘enclave mode’. In the normal case,
the enclave is exited explicitly with EEXIT. However, if an interrupt arrives
while the enclave is executing, an Asynchronous Enclave Exit (AEX) is per-
formed2. This does not directly exit the enclave, instead it first stores the
execution state of the enclave and clears all registers. The AEX also pushes
an Asynchronous Exit Pointer (AEP) on the call stack. This allows the ISR3,
which is called to handle the interrupt after the AEX, to resume the execu-
tion of the enclave. This service routine uses the AEP to jump to trampoline
code (outside the enclave), which then usually calls ERESUME. (This section
is aggregated from [10], [6] and [23]).

1Terminology from [10]
2We look at interrupts in more detail in section 2.2.4
3Interrupt Service Routine

4

2.2. SGX-Step: Framework for Precise Enclave Execution Control

Debug, Pre-Release and Release Enclaves. An SGX enclave can be built
in different modes, which is useful for debugging during code development.
Intel describes the differences between those modes in a blog post ([24]),
from which we summarize the three that are interesting for us4:

1. Debug enclaves include debug symbols and can be inspected by an en-
clave aware debugger. Compiler optimizations are disabled.

2. Pre-Release enclaves do not support debugging (no debug symbols are
included) and have compiler optimizations enabled. However, the en-
clave still does not have to be signed and is launched in enclave-debug
mode. We explain below, why this is useful.

3. Release enclaves are used for final releases. They are the same as pre-
release enclaves except that they have to be signed and they run in
enclave-production mode.

Pre-release enclaves are useful because release enclaves have to be signed by
a valid launch token. Such a token can only be issued by Intel after complet-
ing their production licensing process. Therefore, pre-release enclaves are
the same as release enclaves, except that they cannot be used in production
for remote connections (because users cannot verify their integrity). In par-
ticular, the local behaviour (e.g. the performance) of both types of enclaves
should be the same.

We also use pre-release enclaves for our tests. We adapted the code of SGX-
Step as demonstrated by the code samples from the official linux-sgx repos-
itory5. That means we added optimization flags (-O2) and do-not-debug
flags (-DNDEBUG, -DEDEBUG, -UDEBUG). We also added the option to
build production enclaves.

2.2 SGX-Step: Framework for Precise Enclave Execu-
tion Control

SGX-Step [6] is a kernel framework that allows a (malicious) host of SGX
enclaves to step through the execution of an enclave one instruction at a time.
This enables an attacker to observe the execution state after each instruction
and therefore facilitates side-channel attacks.

2.2.1 Brief Overview of How SGX-Step Works

The core idea of SGX-Step is to frequently preempt enclave execution, such
that it always can execute at most one instruction inside the enclave before

4There is also a Simulation mode, which does not create a real enclave and therefore is
not a good reference for measuring instruction execution times.

5https://github.com/intel/linux-sgx/tree/master/SampleCode

5

https://github.com/intel/linux-sgx/tree/master/SampleCode

2. Background

Figure 2.1: Summary of how the SGX-Step framework interrupts SGX en-
claves instruction by instruction

it is interrupted again.

SGX-Step uses the APIC6 to schedule those fine-grained interrupts in one-
shot mode. This mode delivers a single interrupt after some configurable
time interval. The time resolution is bounded by the CPU’s bus frequency,
which is slower than the CPU’s frequency. More accurate APIC modes exist,
but they are harder to control from user space (which is important in order
to get precise timings as we will see in section 3.2.1).

SGX-Step comes with a library and a patched kernel driver, which simplifies
the configuration of the APIC. Moreover, the driver enables the registration
of a custom AEP, which can be used to add custom code that is executed
every time the enclave is interrupted.

Figure 2.1 summarizes and simplifies the procedure that SGX-Step follows
when executing a single instruction7. We assume that the enclave is already
running and currently executes some instruction (instr in figure 2.1 as indi-
cated by the instruction pointer ip).

1. APIC timer interrupt arrives while the enclave is executing

2. An AEX is performed to exit the enclave

3. The modified kernel module returns the control flow to custom attack
code

4. A new APIC timer is set and the enclave is resumed

6Advanced Programmable Interrupt Controller; A device, which is local to each core and
can be configured to schedule and deliver interrupts.

7I aggregated and simplified the six steps explained in the original paper [6]

6

2.2. SGX-Step: Framework for Precise Enclave Execution Control

2.2.2 APIC Timer Interval

The remaining challenge is to set the APIC timer such that we single-step
through the code running inside an enclave. When we set it too long, we
could execute more than one instruction before the interrupt arrives (an
event referred to as multi-step in [6]). But if we set the timer too short we
have zero-steps, which means we make no progress at all, because we never
start executing an enclave instruction and therefore make no progress. The
perfect timer interval is platform-specific, since it depends on the architec-
ture (e.g. the CPU frequency and how long ERESUME and restoring the
enclave takes).

The right APIC timer interval can be found empirically. In the SGX-Step
paper [6] they generate a program only consisting of nops8 because those
are among the fastest instructions. Therefore, we choose the largest timer
interval such that all nops are still reliably detected. This way no multi-steps
should happen (since other instructions take at least as long as a nop), while
the number of zero-steps is small. However, some of the latter will still occur
(in our tests it was usually less than 0.1%) bit this does not matter since, as
we explain next, we can detect and filter them.

2.2.3 Filtering Zero-Steps

We have seen in section 2.1.2 that the OS takes care of caching the enclave’s
page tables. Because of the strong adversary model of SGX, the OS can be
malicious and manipulate the access bits of unprotected Page Table Entries
(PTEs). As its name suggests, that bit signals whether a page was accessed
or not. This is used for page replacement policies to approximate if a page
was used recently.

SGX-Step sets the access bit of the page that contains the enclave’s code to
0 (not accessed) on every interrupt. After at least one instruction has been
executed, the access bit is set to 1. However, in case we interrupted before
the enclave started (or continued) to execute code, the bit will still be 0 and
thus we know that this was a zero-step.

Note that we cannot detect multi-steps just by looking at access bits, because
it is indistinguishable if one or more than one instruction (of the same page)
were executed. However, in the instruction measurements we present in sec-
tion 3.3, we previously know how many instructions will be executed; Thus
we can make sure that SGX-Step does not multi-step by checking whether
the number of steps performed matches the expected number of instruc-
tions.

8No Operation; an instruction that uses no execution unit and does not perform any
action. This is useful for synchronization, to align instructions or as a place-holder.

7

2. Background

2.2.4 Interrupt Handling and Exceptions

Since SGX-Step interrupts the enclave for each instruction, it is important to
understand how and when exactly interrupt handling is done.

Interrupts. In Intel’s developer’s manual [14] interrupts are generally de-
fined as ‘an asynchronous event that is typically triggered by an I/O device’.
When an interrupt arrives, the processor pauses execution and switches to a
fault handler that is registered for this specific interrupt. When this handler
is done, execution resumes to the code that was running when the interrupt
arrived. ([14]).

As we mentioned in section 2.1.2, when an interrupt arrives during the exe-
cution of an SGX enclave, an AEX is performed before calling the interrupt
handler. What is not clarified in the SGX-Step paper is how an APIC in-
terrupt, whose precision is only multiple CPU cycles, manages to reliably
single-step instructions that just take one CPU cycle. Our speculative at-
tempt to explain this is the following: Interrupts are usually only handled
after an instruction finished and not immediately when they arrive. Addi-
tionally, it would make sense that the enclave starts with an empty pipeline.
Together, if we assume that the interrupt is not handled until the instruction
exits the pipeline, this would give the interrupt a window of the size of the
pipeline’s depth in which it has to arrive. This means it does not have hit
at exactly the right cycle to interrupt an instruction that is processed in one
cycle.

Exceptions. Exceptions are defined as ‘a synchronous event that is gener-
ated when the processor detects one or more predefined conditions while
executing an instruction’ [14]. They are handled very similar as interrupts.

Because single-stepping has a large overhead, SGX-Step can use exceptions
to only interrupt the enclave when specific code pages are executed. To do
this, it registers a fault handler for segmentation faults and marks the first
code page that should be observed as not executable. When the enclave tries
to execute the first instruction of that page, a segmentation fault (because of
the access violation) is raised. This traps into the registered fault handler
which marks the page executable again. After that the custom AEP is ex-
ecuted and sets the APIC timer interval for the next interrupt and thereby
initiates single-stepping.

8

Chapter 3

Measurement Setup and Methods

In this chapter we start by explaining our test environment in detail, then
we discuss how we obtain precise instruction timings inside and outside
enclaves. Furthermore, we introduce three different measurement methods;
one for instructions outside the enclave, the interrupt method of SGX-Step
and lastly one that does the whole time measurement from inside the en-
clave. Finally, we explain the different plots that we produce to analyse
instructions.

3.1 General Setting

Hardware. We tested on two devices. The first one is a Dell Latitude E5470
laptop with a dual-core Intel(R) Core(TM) i7-6600U CPU @ 2.60 GHz. The
second device is an Intel Skull Canyon NUC6i7KYK mini PC with a quad-
core Intel(R) Core(TM) i7-6770HQ CPU running at 2.60 GHz. Although both
processor models support SGX, they are not in the list of supported proces-
sors of SGX-Step. However, this just means that we had to find the right
APIC timer intervals for our processors ourselves (as described in section
2.2.2). We discuss the special BIOS settings and kernel parameters we used
in section 3.2.2.

Software. We tested on two different versions of Ubuntu. The laptop runs
Ubuntu 17.10 with the Linux kernel version v4.13.0. Note that this Ubuntu
version is also not compliant with the SGX-Step recommendations. To be
able to run the framework, we had to use an older compiler version (gcc-
4.8), because the newer version reports problems with position dependent
code in some handwritten assembly files. Those are essential for SGX-Step
to resume the enclave and rewriting them only leads to other problems. The
Intel NUC runs Ubuntu 16.04 (the same version the authors of SGX-Step
used) with a Linux kernel version v4.15.0.

9

3. Measurement Setup and Methods

3.2 Precise Time Measurement

We want a precise measurement routine that produces reliable results in
the presence of superscalar and out-of-order execution with as little noise
as possible. To achieve this, SGX-Step already reduces the code between
starting and stopping the timer as much as possible and uses specific kernel
and BIOS options. We add a better instruction serialization to prevent non-
deterministic overlapping of the measured code with instructions before and
after.

3.2.1 Time-Stamp Counter

In order to have reliable time measurements, we want to minimize other
code that runs between the time sampling. For this reason, SGX-Step in-
cludes a kernel module that enables us to set the APIC from user space.
This way, we can avoid a context switch before the enclave is resumed. We
cannot avoid measuring the code that resumes the enclave and restores its
execution context (since we cannot modify it without invalidating the en-
clave). Therefore we sample the time right before ERESUME and right after
AEX.

Due to superscalar and out-of-order execution it is important to serialize the
instruction stream before and after starting the time measurement. Other-
wise instructions before the start timer could overlap (i.e. be in the pipeline
at the same time as) instructions after it. This could non-deterministically
slow down the measured code, because depending on the execution state
before starting the measurement, more or less additional instructions are
measured. In other words, measuring the same code twice could have in-
consistent results due to the noise from other code (that can be different in
the different measurements) that is being executed in parallel.

mfence. In SGX-Step they use the instruction mfence (memory fence) before
starting the timer. However, according to the Intel manual [15] mfence ‘does
not serialize the instruction stream’. It only guarantees that the effect of
every load and store operation before mfence becomes visible prior to the
execution of memory operations after it. This means mfence has no effect
on instructions that do not involve memory (except for other fences and
serializing instructions), so those could still overlap with our measurements.

cpuid and rdtscp. According to Intel’s white paper on ‘How to Benchmark
Code Execution Times’ [20], the best way to serialize instructions is to use
cpuid and rdtscp in the way we summarized in code snippet 1. To understand
why this is a smart way to measure time, we have to first know what those
instructions do. Although cpuid is actually an instruction for CPU identifica-
tion (it identifies the processor and returns information about features), we

10

3.2. Precise Time Measurement

only use it here because it ‘can be executed at any privilege level to serialize
instruction execution’ [15]. There are no other unprivileged instructions that
really serialize the whole instruction stream. The instruction rdtsc ‘reads the
current value of the processor’s time-stamp counter’ [15]. While rdtscp basi-
cally does the same, it additionally waits until all previous instructions are
finished (because it reads the processor’s ID). Now we can explain the code
snippet: First, on line 1, we wait until all previous instructions have termi-
nated, then we read the current time stamp and store it (lines 2-3). After
the code we want to measure, we use rdtscp (line 5) instead of rdtsc, because
this waits until all previous instructions are finished. This is desirable be-
cause then all operations that we want to measure are actually done and the
time stamp is not read in parallel to the last of them finishing. It is also
better than to use an additional cpuid before line 5, because this instruction
has quite high variance itself, which would propagate into the measurement.
On the last line, we use cpuid again to prevent later instructions to already
start executing while the time stamp is read and thereby slowing this opera-
tion down. Note that storing the time stamp on line 6 cannot interfere with
rdtscp because it has a read-after-write dependency1.

Code Snippet 1 Code benchmarking with cpuid and rdtscp

1: cpuid
2: rdtsc
3: Store timestamp
4: 〈Measured code〉
5: rdtscp
6: Store timestamp
7: cpuid

lfence and sfence There are execution contexts in which cpuid and rdtscp
are not available, e.g. in SGX enclaves. In such cases, we can use an lfence
before rdtsc, which is also the recommendation of the Intel manual [15]. In
our measurements we obtained the best results by using both lfence and
sfence together before rdtsc and also instead of cpuid on line 7 to protect
against later instructions. A more detailed explanation with plots that show
why we use this combination compared to a single mfence can be found in
appendix A. We use this measurement methodology for SGX enclaves in the
counter method presented in chapter 3.3.4.

1Storing the timestamp requires reading the two registers edx and eax that rdtscp writes
to, so that has to wait until rdtscp is finished anyways.

11

3. Measurement Setup and Methods

3.2.2 Reducing Noise

The most obvious solution to deal with noise is to do multiple measure-
ments and then analyse the statistical properties of the results. We found
that repeating each measurement 100’000 times is a good reference point,
since doing more tests only takes longer (after all, we perform an enclave
entry and exit for every single instruction) but does not exhibit a different be-
haviour regarding the observed empirical distribution of the measurements.
We will explain in chapter 3.4 the different methods that we used to visualize
the results.

To make execution times more predictable, we set the following kernel pa-
rameters to disable different performance optimizations and other updates,
following the suggestions of the SGX-Step paper [6]:

1. isolcpus=1: This parameter isolates the CPU core number 1 from the
general scheduler. This means that no process will be scheduled to
this core, except if you manually affinitize it. We do this in the mea-
surement preparation for the process that creates and runs the enclave.
That means the observed code should run alone on a core without any
interference from the scheduler.

2. dis ucode ldr: This disables the microcode loader. We do this because
microcode updates to protect against foreshadow [25] affect the du-
ration of ERESUME significantly. Setting this parameter reduced the
mean number of cycles required for a single step of SGX-Step by ap-
proximately 25% on our machines.

There are three important parameters in the boot menu configurations that
SGX-Step [6] and Nemesis [7] advise to set: We disabled TurboBoost, dy-
namic frequency-scaling (C-States, SpeedStep) as well as HyperThreading.
Additionally, SGX-Step sets the P-States2 maximum and minimum to the
same fixed value before executing the enclave.

Note that all modifications from above are compliant with the threat model
described in section 2.1.1, because the OS is considered to be malicious.
For consistency, we take the same actions for all measurement methods (de-
scribed next in 3.3).

3.3 Measurement Methods

In this subsection we present how we used the insights about precise time
measurements that we have seen so far in this chapter to build multiple
instruction measurement methodologies for different applications. Before

2P-States optimise the voltage and CPU frequency while the core running, which could
introduce jitter.

12

3.3. Measurement Methods

that, we first provide some background information on how we generate
test cases and introduce terminology that will make it easier to explain the
measurement methods afterwards. Then we start in subsection 3.3.2 with
the first measurement method: Measuring instructions outside the enclave,
which is simple to do but nonetheless essential for detecting different im-
plementations of instructions inside and outside enclaves. The other two
approaches both measure instructions inside the enclave. The first one, de-
scribed in 3.3.3, uses SGX-Step to single-step through the enclave’s code and
take the time from before ERESUME to after AEX. In subsection 3.3.4 we ex-
plain the last method, which uses a counter in shared memory that is incre-
mented by a different process. The measurement is performed completely
inside the enclave by sampling this counter before and after executing an
instruction.

3.3.1 Background Information and Terminology

In this subsection we introduce the general structure of our measurements.
We call a test case the observation of a single instruction, this can involve
instructions to prepare the measurement or multiple repetitions of the mea-
sured instruction (the interrupt method in 3.3.3 does multiple measurements
by completely unrolling the loop). However, different instructions are never
measured in the same test case. It is necessary to directly define the assem-
bly code for our test cases because otherwise the code could be translated to
more instructions than intended3. Since we interrupt for every instruction,
it is critical that we know how exactly the assembly code of our test case
looks like (see also challenges 4.6 and 4.7). We will always use the AT&T
syntax when we mention assembly instructions (i.e. with two operands the
syntax is instruction source, destination).

For convenience, we introduce the following terminology for the rest of this
thesis. We distinguish three different types of instructions in a test case:

1. The test instruction is what we actually want to measure. Usually, this
is the only instruction type of which we log the timings4.

2. Initial instructions are only executed once per test case, for example to
move a value to a register that is never overwritten.

3. Prepare instructions are repeated every time before the test instruction.
This can be necessary to restore the execution environment for obtain-
ing consistent results over multiple measurements of the same test
instruction.

3This also applies to inline assembly since the compiler might add code, for example to
save and restore registers

4This is possible, since we know how many instructions there are of each type and we
single-step through them, we can keep track of the current position in the code

13

3. Measurement Setup and Methods

Figure 3.1: Visualization of a test case consisting of multiple tests and what
type of instructions they contain.

We further divide a test case into single tests, which consist of zero or more
prepare instructions and one test instruction. A test case can contain many
repetitions of the same test, which is summarized in figure 3.1. Finally,
an enclave can contain multiple test cases to perform and compare many
different test instructions in the same enclave.

All three measurement methods that are presented in the rest of this section
can use the same specification of instructions – grouped by the types pre-
sented above – to measure a test case. However, some methods (have to)
organise the test cases differently, as we will see next.

3.3.2 Outside Enclave

Outside the enclave, we can use the optimal time measurement with the
cpuid instruction as explained in paragraph 3.2.1. Getting the timing is
straight forward as the right side of figure 3.2 shows: We first execute the
initial and normal prepare instructions, then we start the timer and execute
the test instruction before we sample the timer again. We repeat this in a
loop until we have enough measurements and continue with the next test
case. We have to include initial instructions in the loop because we cannot
guarantee that the architectural state is preserved from one loop iteration to
the next. Initial instructions might set some flags or use registers that are
overwritten by the stop timer, the loop counter or the loop condition check.
Therefore, initial instructions effectively become prepare instructions for this
measurement method.

3.3.3 Interrupt Method

Measuring instructions inside enclaves is more complex, because neither
rdtsc nor cpuid are available. The interrupt method approaches this problem
by measuring the time outside, entering the enclave and allowing it to only
execute a single instruction before exiting again. The best way to construct
test cases is to explicitly repeat each test instead of using loops, which intro-
duce more instructions (especially jumps) that have to be tracked carefully

14

3.3. Measurement Methods

during single-stepping. Completely unrolling the loop makes it easier to
measure the correct instructions (instruction tracking is discussed in more
detail in chapters 4.5 and 4.6). Figure 3.2 visualizes this approach on the left
side and shows the difference to other methods.

Example Time Measurement. In detail, a time measurement with the in-
terrupt method involves the following steps:

1. Mark first page of the observed code not executable

2. Start the enclave and let it run

3. The enclave traps to our custom fault handler when it tries to execute
the not executable code section

4. Mark this page as executable again and set the APIC timer before
resuming the enclave

5. Right before ERESUME, sample the processor’s time stamp and save
it

6. The enclave resumes executing instructions

7. Scheduled APIC interrupt arrives

8. The enclave performs an AEX, we sample time stamp as early as pos-
sible

9. Log the time difference between the two time stamps and the access
bit to memory, filter the data later

10. Set the APIC timer again and continue from 5. until all instructions
from the enclave were executed

11. Parse the data, filter out zero-steps, initial and prepare instructions
before saving the remaining data to a file

3.3.4 Counter Method

To cross-validate the results of interrupt based measurements, we created
the counter method. We basically implemented our own time stamp that
can be read inside the enclave (unlike the processor’s time stamp). This
enables us to perform the measurements inside the enclave without having
to interrupt and exit/resume it. Note that this takes advantage of our control
over the enclave’s code. SGX-Step on the other hand can also be used to
single-step code that we cannot change. For this reason, the counter method
is unlikely to be useful in an attack scenario, however it can still be used for
to validate the interrupt method.

We implement the counter in a different process which just keeps increasing
a variable in a shared memory location by one. It is affinitized to another

15

3. Measurement Setup and Methods

Figure 3.2: Visualization of the different structure of test cases for the Inter-
rupt method compared to outside the enclave and the counter method.

Figure 3.3: Implementation of the counter method with two processes: One
running the enclave, reading the time stamp before and after executing the
test instruction and the other increasing the counter in an infinite loop.

isolated (physical) core to make sure that it is not affected by scheduling
and does not interfere with the enclave. The counter is placed in shared
memory so that the enclave can access it as well, which is visualized in
figure 3.3. Identical to the outside method (cf. 3.3.2), we use a loop for
measuring (see figure 3.2). But instead of using rdtsc (which is not available
inside enclaves) we sample our counter before and after we execute the test
instruction. Additionally, to replace cpuid, we have to use the combination
of fences that was explained in paragraph 3.2.1 to serialize instructions.

To optimize the accuracy of the counter, we implemented it directly in assem-
bly because even inline assembly generates some unnecessary mov instruc-
tions. Additionally, we use loop unrolling to reduce the impact of the jump;

16

3.4. Plot types

we execute one hundred adds in the loop body before we do one jump back
to the start. The counter has to be stopped by killing the process, since the
loop has no condition (which further reduces the number of instructions).

Counter Accuracy. We measured the accuracy of this counter by sampling
it and the processor’s time stamp before and after calling the enclave. This
allows us to compare the difference of our two counter values with the
number of cycles that were actually executed. We observed that our counter
catches approximately 18.5% of all cycles on the NUC. This precision means
that we can only measure instructions on a five cycle granularity. We argue
that this not because the counter is in shared memory but rather seems to be
a fundamental limitation. To show this, we consider two different ways to
implement unshared counters: The first one, shown on the left side of figure
3.4, increases a counter in unshared memory. The second one, visualized
on the right side of the same figure, increments a register. As before, we let
those two counters run for a certain amount of time and control how many
cycles they caught, i.e. how many times they were incremented compared to
the number of processor cycles that were actually executed (which we obtain
with rdtsc, see 3.2.1). The register counter caught 99.5% of all cycles in our
test, which shows that the loop unrolling and implementing the counter in
assembly generally enables us to build a counter with high accuracy. In
other words, we can perform enough add operations to increase the counter
almost at CPU frequency. The counter in unshared memory caught only
18.5% cycles, which is exactly the same as the shared counter. The reason
is probably that the enclave only reads the shared counter and never writes
it, thus the cache coherency protocol does not cause much additional effort.
It is clear that we cannot share registers between cores, i.e. we cannot use
the register counter for our counter method. Therefore we conclude that the
counter accuracy cannot be improved since writing to memory (including all
protocols that need to be followed to ensure consistency) is the underlying
bottleneck.

3.3.5 Overview over all Measurement Methods

Table 31 summarizes the three measurement methods that were presented in
this section: The one outside enclaves, the interrupt and the counter method.

3.4 Plot types

In this section we will explain the four different plots that proved to be
useful: A simple histogram of the timings of test instructions, one that addi-
tionally shows the prepare instructions, a plot that shows the mean of differ-
ent sequences of instructions, and one that shows single measurements over

17

3. Measurement Setup and Methods

Figure 3.4: Visualization of the comparisons for the counter method: The un-
shared counter value resides in unshared memory, while the register counter
only increments a register and does not access memory.

Table 31: Overview over all measurement methods

Outside Enclave Interrupt Method Counter Method

Serialising Instruction cpuid cpuid sfence, lfence

Additionally captured
in the Measurement

movs to restore
registers after first
cpuid

ERESUME, AEX and
some movs to save
registers before cpuid

overlapping
non-memory
operations

Timestamp processor processor
shared variable
incremented by
a counter thread

Special
instruction timings
outside enclaves

can be used even
if we cannot control
the enclave’s code

measurements
directly inside
enclaves

18

3.4. Plot types

time. This section is intended to serve as a reference of what plot types are
available, applications of them will follow in chapter 4.

But before we start, a few words on how the data is processed. The C
program that runs the test (e.g. in the interrupt method it runs the enclave
and performs the single-stepping) logs the measured instructions to log files.
We use a Python script to post process this data with the Matplotlib mod-
ule. Except for the cycles-over-time plot, we always filter points that are
further away from the mean than three times the standard deviation5 to get
more compact plots. If filtering was used, we mention the percentage of
filtered points on the bottom right of each plot. In the legend of the plot, we
indicate the instruction and other relevant information (operands, prepare
instructions, flags). We also state the mean (µ) and the standard deviation
(σ) for each measurement.

3.4.1 Histogram of Test Instructions

The histogram is the plot type that we will use most of the times to represent
our measurements. Figure 3.5 shows it for the three very different instruc-
tions fscale, lfence and rdrand6. On the x-axis we have the number of cycles
(grouped into bins) that were measured for the instructions and we have the
amount of measurements that each bin contains on the y-axis. The number
of bins that were used are always mentioned in the label of the x-axis. In
our case there is no disadvantage in choosing small bins7 since the noise is
normally distributed and only affects the cycle count. That means it does
not produce large single outliers on the y-axis that would have to be filtered
out and therefore it is advisable to choose small bins8 so that we retain most
information of the measurements. The dotted line around each histogram
shows the normal distribution with the measured mean and standard de-
viation to give an idea of how closely the measurements follow a normal
distribution.

Since we also measure enclave entry and exit with the interrupt method
used in figure 3.5, the mean of instructions that only take one cycle (like the
lfence) is multiple thousand cycles. It proved to be hard to read off how many
cycles an instruction needs (because of the challenges described later in 4.1
and 4.10). Therefore we have to look at the relative distance of instructions;
in figure 3.5 we can see that the instructions are clearly separated; rdrand is
the slowest, while an lfence that has nothing to serialize (since there are no
load instructions around it inside the enclave) is more than 350 cycles faster.

5We will see that our data follows a normal distribution, therefore this only cuts away

19

3. Measurement Setup and Methods

Figure 3.5: Histogram plot of the three instructions fscale, lfence and rdrand
measured on the NUC.

3.4.2 Histogram of Prepare and Test Instructions

While we usually only need to see the histogram of test instructions, some-
times essential information can be hidden in the prepare instructions. Figure
3.6 gives a sneak preview of such a case, but we have to defer the explana-
tion to chapter 5.1. The test instructions are displayed in the lower plot. The
legend explains that both test cases essentially measure the same sequence
of instructions: The first case tests movq %rcx, -8(%rsp) with test %rax, %rax
as prepare instruction. The second one tests the same movq instruction, but
it measures only every second movq since one is in the prepare instructions
(which are a single movq, surrounded by two test instructions). Therefore,
since the instruction streams follow the exact same pattern, it is not trivial
to understand why the first test case has two clearly separated peaks while
the second one has only a single peak. Plotting the prepare instructions
provides some previously hidden insights: The violet prepare instruction
(prep 1 of the second test case) is the movq that is always not measured in
the second test and we can clearly see that this is the second peak that was
previously hidden. It surely is still very surprising that every second movq
is slow and we will discuss this in depth in chapter 5.1.

around 0.3% of all data points
6Nemesis [7] did the same test and has a similar representation
7The height of too small bins depends on noise in some scenarios, while to large bins

loose information ([1])
8We usually chose them such that they are only two cycles wide

20

3.4. Plot types

Figure 3.6: Histogram plot (showing also prepare instructions) of movq to
stack with an independent test prepare instruction, measured on the NUC.

3.4.3 Measurements-over-Time Plot

The measurement-over-time plot type provides a more detailed view on un-
processed measurements: It shows how many cycles single test instructions
have taken, i.e. here the x-axis shows the tests and the y-axis the correspond-
ing number of cycles that were measured. The goal is to show patterns in the
measurements (we discuss some in the challenge 4.2 and section 5.1). Figure
3.7 shows the same test as figure 3.6 in the previous chapter 3.4.2 and we
see again that every second measurement is slower. The first test measures
all instructions and thus has a double peak in the histogram plots. There are
also in the aforementioned figure 3.7 two clearly separated groups of points
for the first test case: One slightly above 7600 cycles and one around 7500.
The second test case only measures every second movq, which means it only
measures the fast ones.

We have to plot less instructions in this plot type and disable filtering be-
cause otherwise it would be hard to see patterns: The graphs would show
too many data points or the filtering would shift patterns (e.g. instead of
every even measurement being fast, after filtering one out, every odd one
would be fast). A disadvantage of this detailed plot type is that it can be
confusing because it also shows all outliers, for example on the last 50 in-
structions of this plot (we will discuss further what happens there in chapter
4.2).

21

3. Measurement Setup and Methods

Figure 3.7: Plotting single measurements over time of movq to stack with an
independent test prepare instruction, measured on the NUC.

3.4.4 Bar Plot

The bar plot is useful to visualize patterns that occur with slower and faster
executions of the same instruction. We can, unlike the measurements-over-
time plot from subsection 3.4.3, use this plot type for arbitrarily many in-
structions. Figure 3.8 demonstrates the bar plot on our running example
of the double peaks when we measure movq with an independent test as
prepare instruction that we already saw in the previous sections 3.4.2 and
3.4.3. The x-axis is grouped by periodicity. For each group, we calculate
the mean of all possible instruction sequences: For example, for the period
three, we measure three disjoint sequences of instructions: 0+ k ∗ 3, 1+ k ∗ 3
and 2 + k ∗ 3 for k ∈ N. This means that every period p has exactly p bars,
one for each possible offset. In figure 3.4.3 we clearly see at period two that
every even test instruction is slow and every odd one is fast. In our tests
we saw more complex patterns (e.g. only two of 16 instructions are slow)
that were hard to notice in the measurements-over-time plot but are clearly
visible with the bar visualization.

The maximal period is configurable, however in most cases the it is not
larger than 16. As a guideline, the correct period usually shows the highest
bars and all multiples of it repeat the same pattern. In figure 3.8, the period
is two and it is repeated at every even period, while for the odd ones the
difference between the instructions average out since the same number of
slow and fast movq are measured.

22

3.4. Plot types

Figure 3.8: Bar plot of mov from register to memory with test %rax, %rax as
prepare instruction.

23

Chapter 4

11 Challenges Towards Precise
Measurement

This section discusses eleven challenges that we encountered while measur-
ing instructions inside SGX enclaves. These challenges have to be taken into
account to obtain precise enough timings, but beside this technical aspect,
we think a thorough understanding of them helps to shed light upon the
complexity of modern Intel processors. Some insights of this chapter might
give rise to complex side channels that leak specific details of the microar-
chitectural state. We discuss such an attack, including a proof of concept, in
chapter 6.

4.1 Challenge 1: Incomparability of Different Enclaves

This challenge discusses our observation that latencies for ERESUME and
AEX1 are different from enclave to enclave, even when we run the same
code on the same machine. In the following we show that this can be very
misleading when comparing measurements which were run in different en-
claves. We will see that this problem is solved by simply running all test
cases in the same enclave.

We look at the comparison of division with different operands. The first
plot in figure 4.1 is the original one from the Nemesis paper [7]. It shows
the div instruction for a fixed divisor (0xffffffffffffffff) and different 128 bit
dividends (the upper 64 bits are stored in %rdx, the lower ones in %rax).
The authors concluded that ‘the average interrupt latency clearly increases
as the dividend becomes larger’. The source code of Nemesis2 shows that
they measured the four dividends in different enclaves. This is problematic
as the middle plot of figure 4.1 shows: This is a measurement that we did on

1ERESUME and AEX were described in chapter 2.1.2
2Which is published on https://github.com/jovanbulck/nemesis

25

https://github.com/jovanbulck/nemesis

4. 11 Challenges Towards Precise Measurement

our laptop3 but with the source code of Nemesis. It shows a completely dif-
ferent ordering; the test with the largest dividend is now the second fastest
instruction, while the second smallest dividend is the slowest one. The rea-
son for this is that the time needed for enclave entry and exit seems to differ
for enclaves and this shifts the plots in an unpredictable manner. The last
plot in the same figure shows yet another order of the same instructions
measured with Nemesis on our laptop. Figure 4.2 supports the point that
different enclaves are incomparable by showing four nop instructions that
were measured with the code from Nemesis in four different enclaves. Al-
though those operations are completely identical, their measurements are
shifted on the x-axis.

The simple solution to this problem is to run all tests inside the same enclave.
Section 3.3 already explained in detail how we implemented this. Figure 4.3
shows our plot of the almost identical4 div test, which consistently shows
the same relative distance between different enclaves (of course, the whole
pattern can still be shifted by the differences in enclave entry and exit). There
are two clearly separated peaks: One for the instructions that have zero in
%rdx and one for the others. In fact, we did other tests which showed that
an instruction is already in the second peak if it has 0x1 in %rdx. We also
changed the code of Nemesis to measure all instructions in the same enclave
and the results were consistent with ours.

Conclusions from challenge 1: Comparing instruction measurements is only
consistent if they were all performed in the same enclave.

4.2 Challenge 2: Measuring Across Page Borders

The enclave code size can get considerably large because we have to add all
test cases to the same enclave (cf. 4.1) and for each case we repeat its test
instruction many times (sections 3.2.2 and 3.3). Therefore, it usually has to
span across many pages, which introduces two problems: Firstly, SGX-Step
only handles code contained in one page, secondly, the measurements at
page borders are significant outliers. We will discuss how to handle those
issues in this section.

Since SGX-Step always checks the accessed bit of the code’s page to deter-
mine if an instruction was executed or not, it is limited to one page of code.

3Note that since this is a different device than they used for Nemesis, the whole mea-
surements are shifted on the x-axis (our device is slower)

4We replaced the largest dividend of Nemesis (0x0fffffffffffffff in %rdx) with
0xefffffffffffffff, because this is actually the largest possible value, since for a larger value,
the result when dividing by 0xffffffffffffffff overflows and throws an exception

26

4.2. Challenge 2: Measuring Across Page Borders

7700 7800 7900 8000 8100 8200 8300 8400 8500
IRQ latency (cycles)

0

100

200

300

400

500

600

700

800
Fr

eq
ue

nc
y

rdx=0x0fffffffffffffff; rax=0xffffffffffffffff
rdx=0x00000000ffffffff; rax=0xffffffffffffffff
rdx=0x0000000000000000; rax=0xffffffffffffffff
rdx=0x0000000000000000; rax=0x0000000000000000

8000 8100 8200 8300 8400 8500 8600 8700 8800
IRQ latency (cycles)

0

100

200

300

400

500

600

700

Fr
eq

ue
nc

y

rdx=0x0fffffffffffffff; rax=0xffffffffffffffff
rdx=0x00000000ffffffff; rax=0xffffffffffffffff
rdx=0x0000000000000000; rax=0xffffffffffffffff
rdx=0x0000000000000000; rax=0x0000000000000000

Figure 4.1: All plots show the x86 div instruction, with different dividends
(stored in %rdx:%rax) and the fixed divisor 0xffffffffffffffff. The first plot is
from the Nemesis paper [7], the second and third plots were measured on
our laptop using the source code of Nemesis. They both show a completely
different relative order of instructions than the first plot.

27

4. 11 Challenges Towards Precise Measurement

8000 8100 8200 8300 8400 8500 8600 8700 8800
IRQ latency (cycles)

0

100

200

300

400

500

600

700

Fr
eq

ue
nc

y

nop 4
nop 3
nop 2
nop 1

Figure 4.2: Measurement of four nop instructions with the code of Nemesis
[7] on our laptop.

Figure 4.3: Our plots of the x86 div instruction with different dividends
(stored in %rdx:%rax) and the fixed divisor 0xffffffffffffffff, measured on the
NUC.

28

4.2. Challenge 2: Measuring Across Page Borders

This implies for instance that we could only test 212 nop instructions at once
(which use 4 kB space, the page size on our test devices). First, we tried to
remove this limitation by keeping an array of all pages that contain enclave
code that we want to observe. Then, at every interrupt, we checked for each
page in the array if it was accessed and, if so, marked it as ‘not accessed’
again to detect zero steps. However, it became apparent that this drastically
slows down the tests (cf. 4.3 will show that already accessing two pages is
problematic). To increase the performance without making the tool unnec-
essarily complex, we exploit the fact that the code under measurement is
always linear (i.e. there are no branches). Therefore, we can just keep track
of the current and next page and each time the latter is accessed for the
first time, we move one page further5. Nemesis [7] solved this problem in
a different way: Instead of keeping track of each page, they track the Page
Middle Directory (PMD) entry (i.e. a higher entry in the hierarchical page
table that is the same for a large number of pages). While this is simpler and
can even handle non-linear code, there are two shortcomings compared to
our approach: First, it can have false positives since the observed access bit
is set to one for any accessed page with this PMD entry, not only the ones we
intend to observe. For example, there is no guarantee that the enclave code
before and after the observed code does not use pages with the same PMD
entry. Second, in case the code happens to be aligned such that it spans
over multiple PMD entries, the Nemesis variant will only catch instructions
in the first entry. Our solution cannot have false positives, since we can just
add a small padding to the end of the whole measurement to make sure that
no other code starts in the same or the next page.

When we measure across page borders we have the additional problem of
high outliers for the first instruction of each page. Figure 4.4 shows this for
some test case (which instruction does not matter in this case) that spanned
over 20 pages: We can count 19 outliers that are exactly 4KB apart (one test
had 8B size in this case, so every 512 measurements we see an outlier). This
is because new pages have to be fetched before their first instruction can be
executed, which causes a large overhead for the first measurement. The less
obvious observation that we made in figure 4.4 is that the last 50 measure-
ments at the end of each page are faster. While we have not noticed this
effect in the histogram, the outliers have increased the variance significantly,
which is why we started to filter them out in all plots6.

Conclusions from challenge 2:

5i.e. the old next page becomes the new current page
6One subtleness is that for the bar plot, we have to be careful to not filter them out too

early, because then we would again shift the counting as we already have seen in section 3.4

29

4. 11 Challenges Towards Precise Measurement

Figure 4.4: Measurements over time plot showing outliers at page bound-
aries (measured on the NUC).

1. Multiple pages of linear code can be observed without false positives
by tracking the current and next code pages.

2. The first measurement of each page is a slow outlier that should be
filtered in order to get a meaningful variance.

4.3 Challenge 3: Cache Conflicts

This section shows that the measurements are really sensible to how much
code is prefetched into the cache between enclave entry and resume. This
contributes to the noise in measurements and should thus be minimized as
much as possible when the goal is to capture only the execution time of
instructions.

In the previous section (4.2) we explained how we track the current and next
page to handle multiple pages of code. When we use the prefetch instruction
to make sure that both pages are in the cache right before we resume the
enclave, some measurements contain characteristic noise: Figure 4.5a shows
double peaks that we sporadically observed. In this figure we see the mea-
surement of an add instruction, but the double peaks actually occur inde-
pendent of the operation (but never consistently). They disappear when we
only prefetch the current page: Now every measurement consistently has
no double peaks and looks like figure 4.5b. This is clearly desirable, since
it makes the results more stable and reproducible. We suspect that the sec-

30

4.4. Challenge 4: Constant Time Measurement Code

ond peak happens when prefetching the next page eliminates another page
from cache that was needed by the enclave or ERESUME/AEX and therefore
slows down the measurement because this page has to be fetched again.

Conclusions from challenge 3: Cache pollution should be minimized be-
tween AEX and ERESUME to reduce noise (caused by re-fetching pages)
in the measurements.

4.4 Challenge 4: Constant Time Measurement Code

In this section we argue that we do not only have to consider cache pollution
(cf. 4.3) between enclave exit and resume, but the code between measure-
ments should in general avoid asymmetries: We argue that non-constant
time code7, e.g. slow and fast execution paths in the code that logs instruc-
tion measurements, should be avoided.

We first show the problem of non-constant time code in figure 4.6a: It shows
the comparison of add $0, %rax and add $1, %rax where %rax is always 0
in both test cases. This plot seems to suggest that adding zero is slower
than adding a one. However, there is a key difference between those two
test cases: While for the second test we have to use a prepare instruction
to reset the value of %rax to 0 after we have added one to it, we use no
prepare instruction for the first test case. This itself cannot directly explain
the measured difference, since we still single-step through the code and
therefore measure each instruction separately. However, without constant-
time code outside the enclave, a prepare instruction can be treated faster
than a test instruction, since it does not have to be logged. This means
that for the second test case that fewer instructions are executed before we
measure add $1, %rax because we just measured a prepare instruction. This
seems to slightly affect the timings, since we measured the same time for
both test cases after we rewrote the time measuring code to be (almost)
constant time, as figure 4.6b shows.

We applied three changes to fix this problem. First, we log all zero-steps,
prepare and test instructions together with the accessed bits and filter after
the measurements are done instead of between the enclave exit and resume.
Second, we log to an array in memory and not to a file, because writes to
the latter can be buffered which introduces unpredictable timings. Third,
we replace most branches with the constant time instruction cmov, which
linearises the code and avoids speculative execution. The only branches that
we kept are special cases that do not influence the path that a normal test

7Constant time code takes the same time to execute independent of its inputs. This means
that we cannot have any branches that do operations of different computational complexity.

31

4. 11 Challenges Towards Precise Measurement

(a) Spurious double peak

(b) Consistent single peak after reducing cache pollution

Figure 4.5: Both plots show measurements of an add instruction on the lap-
top. 4.5a shows a double peak which sometimes appears when we prefetch
the next page. 4.5b shows the result that consistently appears when we only
prefetch the current page.

32

4.5. Challenge 5: Imprecise APIC Timer

takes8. However, we provide the compiler with branch prediction informa-
tion to make sure that it optimizes for the path that measurements take9.

Conclusions from challenge 4: Code between AEX and ERESUME affects
the microarchitectural state and hence should always be the same inde-
pendent of the measured instruction to reduce noise.

4.5 Challenge 5: Imprecise APIC Timer

In this section we briefly discuss the problem caused by measuring instruc-
tions with interrupts generated by the APIC timer. In particular, it can hap-
pen that the synchronization with the instruction stream is lost. In section
2.2.1 we already mentioned that this timer runs at bus frequency, i.e. it has
a lower precision than the processor’s cycle counter (since it has a lower
frequency than the CPU). Furthermore, we described in section 2.2.2 how to
empirically choose the APIC timer interval so that no multi-steps and as few
as possible zero-steps happen. In this challenge, we discuss the problem that
occasionally, we still miss more than half of all instructions, which means
that multiple instructions execute between two interrupts (i.e. that we have
multi-steps). We can only speculate about the root cause of this behaviour,
but a fairly convincing explanation would be that this is due to the variance
of enclave entry and exit times (we showed their existence in section 4.1),
because if those procedures take much shorter, then multiple instructions
have time to execute before the next APIC interrupt arrives. This is consis-
tent with the fact that we either catch all instructions or miss many of them:
We saw that AEX and ERESUME are consistent for the same enclave, so if
they happen to be very fast, then every single-step is likely to have actually
executed multiple instructions.

Fortunately, this is easy to solve for instruction benchmarking: We know
how many tests we have and can just count the instructions that we caught
inside the enclave and throw an error if this does not match our expectation.
This way the rare cases of such offsets can be detected and we can repeat
the measurement. However, in an attack setting where we do not know the
code, this case is undetected and would increase the prediction inaccuracy.

Conclusions from challenge 5: Since our APIC timer does not generate in-
terrupts on cycle accuracy, it can happen that variances in ERESUME

8For example, a branch that is only taken when an error happens does not affect the
measurement, since if it is taken once, the whole run is aborted.

9The compiler built-in function builtin expect can be used to annotate the expected value
of a branch

33

4. 11 Challenges Towards Precise Measurement

(a) Non-constant measurement code

(b) Constant measurement code

Figure 4.6: Both plots compare adding 0 or 1 to a register that has the value
0, measured on the laptop. In 4.6a we used non-constant time measurement
code while in 4.6b we show the result for constant time code.

34

4.6. Challenge 6: Keeping Track of Instructions

desynchronise the instruction tracking and cause multi-steps. We have to
detect and handle those rare cases.

4.6 Challenge 6: Keeping Track of Instructions

In this section we will see that counting instructions as described in chal-
lenge 4.5 is not enough, but we also need to make sure that the right instruc-
tions are measured. We will introduce further mechanisms to detect such
cases.

Precisely tracking instructions is essential as we will see on the example of
floating point multiplication with fmul. The first results that we obtained
for those measurements were hard to explain. We show in this section the
issue with our original measurements before we will discuss the fixed plots
in the next section 4.7. The problem is that there are instructions that consist
of multiple parts, which can be interrupted in the middle. This is a prob-
lem, because it shifts our instruction tracking and we start measuring the
wrong operation. In our case the problematic instruction is finit (opcode 9B
DB E3), which initializes the ‘FPU10 after checking for pending unmasked
floating-point exceptions’ [15]. There is another instruction, fninit, which
does the same but without checking for exceptions. Interestingly, this has
the last two bytes of finit as opcode: DB E3. Printing the instruction pointer
of a debug enclave (cf. 2.1.2) confirmed that 9B is executed on its own, i.e.
that finit is split into one instruction that checks for exceptions and one that
initializes the FPU. By single-stepping, we interrupt the enclave twice for
finit and see two executed instructions, which shifts our instruction count.
Since we only use finit once as an initial instruction, the total count of mea-
sured test instructions is correct, but we are measuring prepare instead of
test instructions. If finit is used as a prepare instruction, then there would
be much more interrupts than we expect and this would be easier to catch.

We now discuss our approach to deal with this problem: Figure 4.7 shows
the modified measurement code, where the coloured part are the additional
flags that we added to accurately keep track of measured instructions. Be-
fore we start measuring, we set a variable observed in shared memory to true
from inside the enclave. We only count instructions if the page was accessed
and observed is set to true. We set this flag to false before we jump to the
next test case or before we exit the enclave. This is an additional measure11

to protect against false positives, since we can be sure that no code outside
this observe flags is counted. In other word, the observe flag inserts verifi-
able checkpoints in the code. Counting the number of instructions between

10Floating Point Unit
11The other measure is to pad the test cases such that no other code is in the same page,

as we explained in section 4.2

35

4. 11 Challenges Towards Precise Measurement

Figure 4.7: Instructions are only counted if a code page was accessed and
the observe variable is set to true. The callback code is a simplification, be-
cause we actually have to use constant time code as we saw in section 4.4.

these checkpoints and comparing them with the expected number allows
us to detect anomalies at a fine granularity level. Figure 4.8 shows the con-
crete example of finit: On the left side we see how the measurement was
planned; there is one initial instruction (finit) and two tests, both consisting
of a prepare and a test instruction. There are five interrupts and we only
log the timings of the two test instructions. On the right side we see what
happens when finit is interrupted twice: Now we measure prepare instead
of test instructions. There is an additional interrupt at the end, however it is
counted as a prepare instruction, so the number of measurements is still cor-
rect. We check with the modification of this section for unexpected trailing
instructions, such as the last test instruction in this example. We can detect
them because they still have the observe flag set to true and are a valid time
measurement although we do not expect any additional measurements.

While strictly speaking it is enough to only do this detection once for every
test case and then adapt to the correct number of instructions, keeping the
observe flag as a fixed sanity check in all measurements has additional ben-
efits. First, we do not have to worry about any other statements that are in
our observed pages. For example the jumps from one test case to the next
one can be tricky to catch because, depending on how large the relative im-
mediate of the label is, this instruction can be faster than a nop and thus can

36

4.7. Challenge 7: Verifying Tests

Figure 4.8: Visualisation of how an initial instruction (finit) that has more
interrupts than expected, can slightly shift the instruction measurements.
On the left side is we see how the measurement is intended (it measures all
test instructions), on the right side we see the shifted version that measures
prepare instructions by mistake.

be missed by SGX-Step. Second, the usability is better since test cases often
change frequently and an additional step to verify them each time would
cost time and can be forgotten easily.

Conclusions from challenge 6: To catch special instruction that take multiple
steps we have to track the enclave execution precisely and detect trailing
instructions.

4.7 Challenge 7: Verifying Tests

After we saw that we need to precisely track instructions in sections 2.2.2
and 4.6, we will argument here that it is indispensable to check prepare in-
structions as well. They interact with test instructions by directly modifying
the (micro)architectural state and we need to verify that their effect is what
we expect and not some corner case that behaves differently.

We will discuss this more in depth on the example of measuring floating
point multiplication, since those results are also interesting apart from illus-
trating the point of this section. To check the accuracy of our tool, we mea-
sure instructions that we know should have data dependent execution times.
According to Agner Fog the ‘handling of subnormal numbers is very costly
in some cases because the subnormal results are handled by microcode ex-
ceptions’ [12]. We construct the following test case, using specific floating

37

4. 11 Challenges Towards Precise Measurement

point values for which D. Kohlbrenner and H. Shacham have measured dif-
ferent times in [18]: First, the initial instruction finit initializes the FPU12,
then we have two fld as prepare instructions to load the operands of the
multiplication on the FPU register stack. As test instruction we use fmul,
which multiplies the first two elements of the FPU stack and then pushes
their product back on this stack. However, this test case is not showing any
difference between subnormal and normal floats. There is a subtle mistake
in this experiment: According to the Intel manual volume 1 [14], the FPU
stack has space for eight values. When you push more values, it is not only
wrapping around, but depending on the instruction it might also overwrite
the first value on the stack with a NaN (Not a Number). This means in
the test case from before that independent of the operands that we want to
measure, we always overflow the stack and actually only observe the multi-
plication with NaNs. We will now show a test case with modified prepare
instructions which confirms that overflowing the stack and multiplying with
a NaN have the same execution time while non-exceptional multiplication
is significantly faster. Figure 4.9 shows this test case with three tests, all of
which measure fmul, but they use different prepare instructions. The first,
fmul 1.0, 1.0, wrap around, pushes nine times 1.0 on the stack, i.e. it causes an
overflow. The second test, fmul 1.0, 1.0, ST(0)-ST(7), initializes all eight FPU
stack registers with 1.0 and therefore does not overflow. The last test fmul
1.0, NaN pushes 1.0 and a NaN on the stack. We see that the last two tests
overlap, because they are actually both performing the multiplication with
a NaN value. The first test is faster, which makes sense because multiplying
with a NaN is probably an expensive special case.

To get back to the original motivation to test floating point values, also af-
ter we fixed the tests (by always reinitializing the floating point stack with
finit as preparation), we still did not see a difference when one operand
is a subnormal value versus when both are normal values as the first two
fmul tests of figure 4.10 show. However, we can also see in the same figure
that using the newer SSE13 instruction mulsd shows the expected difference.
This leads us to believe that fmul instructions handle subnormal values dif-
ferently. In [18] they measured the multiplication in JavaScript, so we do
not know which assembly instructions were actually run, but it seems to be
likely that this was also mulsd, because e.g. also gcc compiles floating point
multiplication to SSE instructions on our machines.

Conclusions from challenge 7: Prepare instructions influence test instruction
by modifying the (micro)architectural state. We have to carefully check
that they execute as expected and not exhibit exceptional behaviour (e.g.

12Floating Point Unit
13Streaming SIMD Extensions

38

4.8. Challenge 8: Setting Flags

Figure 4.9: Measurement of floating point multiplication with fmul on the
NUC. We compare three test cases: The orange histogram shows fmul 1.0, 1.0,
ST(0)-ST(7), which multiplies 1.0 with 1.0 by taking the first two elements
of the FPU stack. While this test case only pushes eight values on the stack,
the blue test case (fmul 1.0, 1.0, wrap around) pushes nine values and thus
overflows the stack. And green test case, fmul 1.0, NaN, multiplies 1.0 with
a Not-a-Number (NaN) value.

by using resources such as the Intel manuals [14] and [15] or Agner Fog’s
optimization guide [12]).

4.8 Challenge 8: Setting Flags

While previous challenges showed mistakes and how we can avoid them,
this and the next section 4.9 will be different in the sense that they explain
useful operations to construct advanced test cases. In this section we will
show how we set status flags for testing instructions like cmov.

The instruction cmov performs a conditional move depending on the value
of the status flags set by previous instructions. Those flags are either set
as side effects of instructions like add (e.g. when an overflow happens) or
explicitly, for example with the test instruction. The latter performs a logical
and of its operands and then sets the registers according to the result. Figure
4.11 serves as motivation why we want to perform tests that use flags: It
shows the comparison of cmov from stack14 to a register where it once ac-

14Section 4.9 discusses how memory operands can be used in detail

39

4. 11 Challenges Towards Precise Measurement

Figure 4.10: Measuring the time difference between multiplying normal
and subnormal values with fmul (blue and orange) and mulsd (green and
red), measured on the laptop. Except for the multiplication of a normal
with a subnormal value using mulsd, all test cases show the same timings.

tually performs the move (ZF=1) and once not (ZF=0). It is important that
those two cases cannot be distinguished because they are the fundamental
assumptions of many data oblivious frameworks like Racoon [21].

We use test %rax, %rax to set the zero flag in the following way: We set the
register %rax to either zero or one; if it is zero, the logical and will also be
zero and the zero flag (ZF) is set to one. In the other case, we have ZF=0
because the result of the and is one. Then we can use the version of the
conditional command that performs its operation based on ZF, e.g. for the
mentioned conditional move of figure 4.11 we used cmovz (move if ZF=1).
Since the enclave has to save and restore the execution environment, it is
not surprising that status flags are preserved across AEX and ERESUME.
Therefore, if prepare and test instructions do not set flags themselves (one
can check this in the ‘Flags Affected’ section of the Intel manual [15]), it
is enough to set them once in the initial instructions. We actually verified
that the flags are restored by setting them in the first test case and then
performing a conditional jump15 to the end of the enclave code in the initial
instructions of the second test case. If the test aborts after exactly half the
instructions when we set one flag, but it executes all instructions if we set
the opposite flag, then we know that the flag value is preserved for the first
test case.

15jz lab: Jump to the label lab if the zero flag is set to one

40

4.9. Challenge 9: Writing to Memory

Figure 4.11: Comparing the conditional move cmov from stack to register
where once the value is actually moved and once it is not.

Conclusions from challenge 8: Flags can be set with test %rax, %rax to ZF=1
for %rax=1 and ZF=0 for %rax=0 and are preserved over enclave exit and
resume. If prepare and test instructions do not affect those flags, then it
is sufficient to set them in the initial instructions.

4.9 Challenge 9: Writing to Memory

In this section we discuss three convenient options to perform tests that
read or write to memory. They cover different use cases and are simple
to implement. In particular, we look at storing data in the red zone, the
read-only data and the data section of the program:

1. The red zone is an area below the stack pointer that is commonly used
by compilers as an optimization to store temporary data without ma-
nipulating the stack pointer. According to the documentation for GNU
compilers [9], a 128-byte area below the stack pointer is guaranteed to
exist. For our use case, this is convenient to use, since it does not
require any extra steps and we can read and write to that location.
However, it is also a special case to write to the red zone and might
not be a realistic option for all instructions to test. For example, global
variables or large arrays will not be stored in the red zone in normal
programs.

41

4. 11 Challenges Towards Precise Measurement

2. We can also place values in the read-only data section of the program.
To do so, we use the .rodata in ELF16 binaries. This is demonstrated in
code snippet 2, which shows how one can place the 8B aligned and 8B
long floating point value 1.0 in the read-only data section. The obvious
downside is that we can only read from this memory.

3. The last and often best option is to use the data section of the ELF binary,
which saves space for uninitialized data. This is done in the same way
as we see in snippet 2 for the read-only section, but we use the .comm
assembler directive instead of .rodata. Besides that it allows read and
write operations, it also makes more sense to flush those locations than
the red zone (e.g. to test the difference of instructions when operands
are cached or not).

Code Snippet 2 Assembly code to place the floating point value 1.0 in read-
only memory

1: .section .rodata
2: .align 8
3: .ONE:
4: . the upper and lower 32 bits of 1.0 are interpreted as integers
5: .long 0 . lower bits
6: .long 1072693248 . upper bits

Table 41: Comparison of different options to write to memory

Name Usage Write Assembler Directive

red zone temporary data 3 -
read-only section static data 7 .rodata
data section many applications 3 .comm

Conclusions from challenge 9: Table 41 summarizes three different options
(red zone, read-only and data section) that can be used to store values
in memory. For each option, we mention for what applications it makes
sense to use it, if this memory is writeable and the assembler directive
that has to be used to put values in this section. It makes sense to choose
the option that is closest to what a compiler would produce for the imag-
ined test case because this produces realistic measurements.

16Executable and Linkable Format

42

4.10. Challenge 10: Two Noise Sources

4.10 Challenge 10: Two Noise Sources

In this section we discuss the fundamental problem that we have two sources
of noise when we measure inside enclaves: On one hand the enclave entry
and exit and on the other hand the instruction measurement (including the
test instruction itself). We will discuss our attempts to filter the noise of AEX
and ERESUME and their problems.

We will first look at this noise filtering problem from a mathematical point
of view. Supported by the histogram plots of previous sections (for instance
figure 4.10), it is reasonable to assume that we have Gaussian noise. Let X ∼
N (µX, σ2

X) be the random variable for the execution time of an instruction
and Y ∼ N (µY, σ2

Y) be the one for enclave entry and exit. In that case our
overall measurement results follow a third random variable Z = X + Y.
Now if fX is the probability density function of X and fY is the one of Y,
then the distribution of Z is the convolution of fX and fY. In the case of
normal distributions, this is

fZ = conv(fX, fY) = N (µX + µY, σ2
X + σ2

Y) (4.1)

which is also consistent with our measurements of Z, that closely followed
a normal distribution. The basic idea to obtain the measurements of X if to
filter the effect of Y and then perform a deconvolution, i.e. we want to mea-
sure Y so that together with Z we can recover X by fitting distributions fZ
and fY to their measurements and deconvolve their approximated density
functions. Figure 4.12 demonstrates our implementation of this on artificial
data: We generated instruction and noise timings according to normal dis-
tributions and added them to get the test data. The idea is that we can
measure noise and overall timings as shown in the upper graph and then re-
cover the instruction timings shown in the lower plot. This would have two
main benefits: First, it would factor out the different effects of enclave en-
try and exit and thus make graphs from different enclaves comparable (see
the problem explained in section 4.1). Second, it would reduce the variance
significantly17. Most of the variance that we see should be caused by AEX
and ERESUME (because they take much more cycles than the measured
instruction).

However, in practice there are problems to measure only the noise from
enclave entry and exit. Measuring the time of zero steps that naturally hap-
pen during a test case in isolation has too high variance to be used for
the deconvolution, as figure 4.13 shows. According to equation 4.1, the
zero steps must have a smaller variance (σY) than the instruction measure-
ments (σ2

Z = σ2
X + σ2

Y), but measuring e.g. add has a standard deviation of
17Figure 4.12 can be misleading, because the x-axis is different. But also as an absolute

value, the variance of the test data was chosen quite high (compared to tests outside the
enclave which had a variance below three).

43

4. 11 Challenges Towards Precise Measurement

Figure 4.12: Show case of the deconvolution on sample data. The y-axis for
the recovered data is not scaled to the number of measurements, since the
probability distribution is independent of the number of measured instruc-
tions.

σZ ≈ 15 (as we saw in figure 4.6b) while the zero steps from figure 4.13
have σY > 1000. Additionally, we do not know when exactly the interrupt
arrived because it is difficult to time (cf. 2.2.2, 2.2.4 and 4.5). That means
the interrupt could have arrived just before the test instruction started to
execute, but also much earlier.

Another approach to measure zero steps is to leave the first code page of the
enclave marked as not executable. This way we are sure that an AEX is per-
formed right when it tries to execute the first instruction, because this raises
a page fault exception. However, figure 4.14 shows that this exit path, which
is different from when an interrupt arrives, is slower by multiple thousand
cycles (normal nop instructions take around 7500 cycles on the NUC). The
problem is that while SGX-Step has registered their own fault handler for
interrupts, page faults go through the kernel and we can not stop our timer
before we return to user space. Therefore, we measure all kernel code that
was executed before we could end our time measurement. This increases the
mean as well as the variance and thus cannot be used for deconvolution for
the same reason as the first approach. When we modify the Ubuntu kernel
such that it takes the second timer right in the beginning of the page fault
handler and writes it to the kernel log, we obtain measurements that are fast
enough but still have too high variance, as figure 4.15 shows.

44

4.10. Challenge 10: Two Noise Sources

Figure 4.13: Repeat normal test cases on the NUC and collect zero steps
that naturally occur until you have measured a significant amount of them.

Figure 4.14: We mark the first code page as not executable and then measure
the time it took to enter the enclave and exit with an error before executing
a single instruction, measured on the NUC.

45

4. 11 Challenges Towards Precise Measurement

Figure 4.15: Same as figure 4.14, but we use a modified kernel to take the
second timer directly in the page fault routine. The recovered data is not
plotted, because the variance is invalid.

Conclusions from challenge 10: We have two convoluted distributions: One
normal distribution for AEX and ERESUME and one for the instruction
itself. It proved to be difficult to reliably measure zero steps to filter
out the first noise source. An alternative is to use the measurement of
nop instructions for deconvolution, since we know from tests outside the
enclave, that nops only take one cycle.

4.11 Challenge 11: Synthetic State on AEX

In this section we discuss the technical challenge of keeping the synthetic
state consistent when inserting custom code between ERESUME and AEX.

The synthetic state replaces the processor’s state on (asynchronous) enclave
exit to prevent leakage. Apart from using placeholder values, this also sets
the AEP18 and prepares arguments for ERESUME. A full specification of the
values of each register can be found in the third volume of the Intel devel-
oper’s manual ([16]). The problem is that by adding instructions between
AEX and ERESUME we may overwrite the synthetic state. For instance, this
is a problem with cpuid (which we use for serialization, cf. 3.2.1): This in-
struction writes to four registers, among those %rcx which is used by the
synthetic state to store the AEP. Therefore, we need to preserve this value

18Asynchronous Exit Pointer

46

4.11. Challenge 11: Synthetic State on AEX

because otherwise we would jump to an invalid address. Another instance
is C code in the fault handler (e.g. for zero step measurement in 4.10). The
compiler is free to use any volatile registers (to store local variables) without
preserving their value. The mentioned %rcx register is one of them and thus
needs to be preserved manually.

Conclusions from challenge 11: Code between AEX and ERESUME must
preserve the synthetic state.

47

Chapter 5

Applications

In this chapter we will look at an application of our improved tool to mea-
sure memory writes. We will first discuss the occurrence of reproducible
double peaks and then use this knowledge to exploit a side-channel based
on instruction alignment.

5.1 Double Peaks on Memory Write

We will discuss in this section reproducible double peaks in the distribu-
tion of time measurements of memory writes with mov. We will see that
this problem is different from the spurious cache conflicts of section 4.3, be-
cause it happens consistently and with unique patterns. Moreover, we only
observed the double peaks in this section in connection with mov. After look-
ing at some examples of double peaks we will explore possible reasons that
could justify why they might happen. In the end, we will get back to the
first examples and reconsider them from the perspective of our hypothesis.

Double Peak Variants. We first introduce four cases that show different
variants of double peaks. All characteristics of the plots that we discuss in
this section are stable in occurrence as well as dimension, unlike the double
peaks that we have seen in section 4.3. All four test cases that we present
next measure the same test instruction, movq %rcx, -8(%rsp), which writes
a value from register %rcx to the red zone (cf. 4.9). Figure 5.1 shows two
clearly separated peaks for a test that solely contains the aforementioned test
instruction. However, we only observe a single peak when we add a nop as a
prepare instruction. While the height of the peaks is stable across executions,
it changes if other prepare instructions are used: Figure 5.2 shows that the
peaks are of equal height when using the single prepare instruction test %rcx,
%rcx (the blue histogram). However, there is only one peak when we add
a nop to the prepare instructions, as we see with the orange measurements.

49

5. Applications

Figure 5.1: While a single mov from register to stack without any prepare
instructions shows a double peak, the same test with a nop as prepare in-
struction does not. Measured on the NUC.

Additionally, the shape of the peaks also depends on the operands: Figure
5.3a shows that we have two peaks with the prepare instruction mov $1, %rcx.
On the other hand, with the prepare instruction mov $1, %rax, i.e. a mov to
another register than the one used by the test instruction, we only measure
a single peak, as figure 5.3b shows. In both cases, there are no double peaks
with an additional prepare nop. Table 51 summarises the four double peak
variants that we discussed. For each figure, it shows the prepare instructions
of the test cases and whether they have a single fast peak or two peaks (and
their sizes).

We now shift the focus from the variants of double peaks to the temporal
behaviour of the test instruction timings to understand the temporal relation
between slow and fast movs. We consider this relation on the example of a
mov from register to memory with test %rax, %rax as prepare instruction.
We have already seen in histogram 5.2 that this test case shows two double
peaks of equal size. Figures 5.4 and 5.51 show that every second instruction
is fast. In the first, we see that when we put one mov into the prepare
instructions2 then the test instruction measurements suddenly show only
the fast peak. However, we can see that the prepare mov (the violet prep 1
in figure 5.4) now only measures slow timings. Figure 5.5 makes it clear
that movs at an odd position are on average approximately 100 cycles faster

1We have already seen both figures in the plot types introduction in section 3.4
2I.e. use test %rax, %rax; movq %rcx, -8%rsp; test %rax, %rax as prepare instructions

50

5.1. Double Peaks on Memory Write

Figure 5.2: Double peak of mov from %rcx to stack with the dependent
prepare instructions test %rcx, %rcx. Adding a prepare nop makes the slower
peak disappear. Measured on the NUC.

Table 51: Overview over the four different variants of double peaks pre-
sented in the paragraph ‘Double Peak Variants’ in 5.1. For each figure, we
specify the prepare instructions and whether there is a fast and/or a slow
peak.

Figure Prepare Instructions Double Peaks Heights
5.1 - yes larger fast peak

nop no -
5.2 test %rcx, %rcx yes equal peaks

nop; test %rcx, %rcx no -
5.3a mov $1, %rcx yes larger fast peak

nop; mov $1, %rcx no -
5.3b mov $1, %rax no -

nop; mov $1, %rax no -

51

5. Applications

(a) Dependent prepare instruction

(b) Independent prepare instruction

Figure 5.3: Double peak of mov from %rcx to stack with the prepare instruc-
tions mov $1, register. The test case in plot 5.3a uses the same register %rcx
in the prepare and test instructions, while in 5.3b independent registers are
used. In both cases, adding a nop to the prepare instructions makes the
double peaks disappear. Measured on the NUC.

52

5.1. Double Peaks on Memory Write

Figure 5.4: Histogram plot of mov from register to memory with test %rax,
%rax as prepare instruction. When we measure every mov, we see the double
peak, while if we only measure every second mov we do not.

than those in an even one. We can even take this one step further and see in
figure 5.6 that every second mov to memory – except on page boundaries –
is always going to be either fast or slow.

Cache Bypass Hypothesis. We now explore a theory that could possibly
explain the source of those double peaks. Then we will briefly reconsider the
four variants of double peaks that we saw in the beginning of this section.
Essentially, we hypothesize that due to optimizations, the CPU sometimes
decides to bypass the cache and directly write to memory. In that case, we
measure a longer execution time than for a write to cache, because we mea-
sure the time until the instruction successfully finished its write. In other
words, there is a difference in the point where an instruction retires: While
a cache bypassing write waits until the value is committed to memory, a
write to cache is faster and already finishes when the value is in cache but
the memory transaction is still pending. Of course, a cached value also has
to be written back to memory eventually, however, this is done by the cache
coherency protocol and not by the instruction that we measure. This can
thus happen after, or even in parallel, to our measurement and, therefore,
does not prolong the timings of the mov. Given the sheer complexity of Intel
CPUs and the unavailability of internal optimization details, we can only
speculate what is happening behind the curtain. The architectural details in
this paragraph are based on the information from WikiChip [2]. We assume
that memory write operations look at the allocation queue (which holds all

53

5. Applications

Figure 5.5: Bar plot of mov from register to memory with test %rax, %rax
as prepare instruction. On the x-axis is the period for each of which we
calculate the mean of the instruction sequences with all possible offsets (e.g.
for period 3 we measure three disjoint sequences of instructions: 0 + k ∗ 3,
1 + k ∗ 3 and 2 + k ∗ 3 for k ∈N)

Figure 5.6: Pattern plot of mov from register to memory with test %rax, %rax
as prepare instruction.

54

5.1. Double Peaks on Memory Write

currently decoded instructions) and then decide if the written location is
likely to be used again in the future (and thus should be cached) or if it is
better to directly write it to memory and not pollute the cache. The alloca-
tion queue’s content depends on the fetch and decode window, which has
multiple implications: First, code alignment is important, since this causes
the 16B fetch windows to include different instructions. Second, how the
instructions are decoded to micro-ops3 also changes the allocation queue.
According to [2] there is only one complex decoder, which means only one
unit can decode instructions that produce multiple micro-ops. Since mov
produces, according to Agner Fog [11], two (unfused4) micro-ops, it will
have a lower throughput when other complex instructions are in the same
fetch window.

Supporting Arguments. We now present three figures that support this
theory. First, figure 5.7 compares mov and movnti. The second instruction
uses a non-temporal hint, informing the processor that this data will not
be used in the near future. Thus this memory write usually bypasses the
cache. It nicely fits our hypothesis that the measurements of movnti over-
lap with the slower peak of mov, since our proposition claims that those
are the instructions that bypass the cache as well. In general, also the gap
between the two peaks can be explained, because writing to memory has a
cycle penalty that is in the same range (around 100 cycles) as the difference
between the peaks. Second, figure 5.8 shows the measurement of mov from
register to memory. Apart from the first test case, all others have the same
number of instructions, the only difference between them is that the nop
that they have as prepare instruction is encoded using a different amount
of bytes. We only see double peaks for zero5 as well as two and three byte
nops. This is compatible with our hypothesis in the sense that the number
of instructions is exactly the same, but the fetch windows do look different
for those test cases. To be able to understand why some particular sizes of
nop instructions show double peaks, we would need to know the exact crite-
ria that trigger the cache bypass optimization as well as the precise content
of the allocation queue. The third test case, shown with two plot types in
figure 5.9, consists of the prepare instruction movq -8(%rsp), %rcx followed
by the test instruction movq %rcx, -8(%rsp), i.e. we first read a value from the
stack and then we write it back to the same location. Figure 5.9a shows that
the read operation (the orange prep 0) also shows a double peak when it is
combined with a write operation (which is the blue histogram in the lower
plot of 5.9a). This is consistent with our theory, since if the second peak of

3Micro-operations are the elementary units that assembly instructions are broken into.
They cause execution units to perform basic operations that realize the effect of a more
complex operation.

4Certain micro-ops can be merged to a single one (after decoding)
5I.e. no prepare instruction

55

5. Applications

Figure 5.7: Comparison of mov and movnti which both move a value from a
register to memory, but the second one uses a non-temporal hint to tell the
processor that this data will not be used again in the near future. Measured
on the NUC.

writes are bypassing the cache, then the next read operation has to fetch its
value from memory, and will therefore be slow. Indeed, figure 5.9b shows
at period 86 that most slow reads are preceded by slow writes, i.e. for the
slow reads at offset 5 and 7, there are preceding slow writes at offsets 4 and
6.

Reconsidered Double Peak Variants We now reconsider the double peak
plots from the beginning and explain how they fit to our hypothesis. Before
we start with that, we like to point out that it makes sense that we never saw
double peaks before figure 5.1, because only write operations can bypass
the cache: We could not observe this behaviour e.g. for cmov, because it
can only write to registers – not directly to memory. We speculate that
other write operations like add %rcx, -8(%rsp) do not show double peaks,
because it is likely that the result of an addition is used in the near future,
so optimizations probably work differently for add than for mov. We will
now explore how our theory explains why some prepare instructions have
two equal double peaks while others have not and how this depends on the
operands.

First towards the sizes of double peaks: The regular pattern of figures 5.2,

6The period seems to be 8 here, because the pattern starts repeating at 16 (and also higher
periods that are not shown in figure 5.9b)

56

5.1. Double Peaks on Memory Write

Figure 5.8: Plot of movq with nops of different lengths (up to 9B) as prepare
instruction. MEasured on the NUC.

5.5 and 5.6 is justified by the fact that the size of an encoded mov to memory
is 5B and that of test %rax, %rax is 3B, so together a test is exactly 8B long.
This fits to our theory, because the 16B fetch windows will always look at
the same instructions and therefore lead to the same allocation queue for
this test case. Every second instruction probably has the same microarchi-
tectural environment because two tests fit in one fetch window. If one state
triggers the cache bypass optimization, then it will happen for every second
instruction, because they have the same state. Other prepare instructions,
like the mov in figure 5.3a, do not repeat the same preconditions (structure
of the fetch window and the allocation queue) as frequently for their test in-
struction. Consequently less instructions have a state that triggers the slow
behaviour and thus there is a smaller second peak.

Secondly, concerning the operand dependency: In figure 5.3 we saw that
the appearance of double peaks also depends on whether the prepare in-
struction is independent from the test instruction or not. On one hand, inde-
pendent instructions can be reordered and executed in parallel to the mov,
on the other hand, the dependent instruction has a read-after-write depen-
dency and has to be stalled. Consistent with our proposition, this changes
the allocation queue and thus also the optimization decision to bypass the
cache. Apart from influencing the microarchitectural state for an instruc-
tion, out-of-order execution has little influence on our test cases because we
single-step through the enclave code.

57

5. Applications

(a) Histogram with prepare instruction

(b) Bar plot

Figure 5.9: Both figures are different plot types for the same test case. They
show a movq from %rcx to stack where we first read this stack location to
%rcx as a prepare instruction (i.e. both instructions read and write the same
location and are thus dependent).

58

5.1. Double Peaks on Memory Write

Figure 5.10: Double peak of mov from %rcx to stack with the dependent
prepare instructions test %rcx, %rcx. Measured on the NUC but, unlike
figure 5.2, outside the SGX enclave.

No Double Peaks Outside Enclaves We briefly discuss why no double
peaks appear in measurements outside enclaves. Figure 5.10 shows the same
test case that has two peaks of equal height inside the enclave (which we saw
earlier in figure 5.2). It clearly has only a single peak, despite having much
less noise (because measuring outside is easier as we saw in 3.3). However,
this does not necessarily mean that there are no double peaks outside, be-
cause our measurement method is rather different outside enclaves: We do
not single-step instructions, we execute them in a loop. As we discussed in
sections 3.3.2 and 3.3.3, we do this because there is no AEX7 that preserves
our execution environment between measurements. Without this, it is non-
trivial to single-step through an execution and measure instruction timings
unless we explicitly insert the time measurements in the code – which we do
in the loop. This impacts the (micro)architectural state for each test instruc-
tion significantly and can very well be the reason why we do not measure
double peaks outside enclaves. The same argument holds for the counter
method (section 3.3.4), which also does not show double peaks as we can
see in figure 5.11. The counter method has the additional problem of being
less precise.

Further Implications. The insight that code alignment changes the mea-
surements implies that if we want to measure under the exact same condi-
tions for all test cases, they need to have the same alignment. If we neglect

7Asynchronous Enclave Exit, see 2.1.2

59

5. Applications

Figure 5.11: Same as figure 5.10 but measured inside enclaves with the
counter method.

to do this, then different test cases with the same instruction could show
varying measurements because they have different alignments. This is the
reason why we padded them in section 3.3, so that each new test case starts
aligned to pages. We conclude from this section that the processor architec-
ture, especially optimizations, can influence our measurements in complex
ways that might even be difficult to see outside enclaves (because there, the
execution environment is not preserved between measurements).

5.2 Poor Man’s cmov

In this section, we present a timing side channel attack that is based on the
double peaks from the previous section 5.1. We will leak which branch of a
(specially crafted) program running in an SGX enclave has been taken. Both
branches use the same instructions (mov and test) with different registers as
operands. Despite being almost identical, we are still able to distinguish
the branches, and thereby show our improved precision in comparison with
Nemesis [7].

The victim code (from which we will leak which branch it took) is shown
in code snippet 3. The basic idea behind this example is to build something
similar to a cmov: Based on some secret, we will either move a value from
%rdx or %rcx to a memory location. However, instead of using cmov, we do
this manually with two branches. We will now discuss code snippet 3 in
more detail:

60

5.2. Poor Man’s cmov

1. Lines 1-2: Align the measured instructions such that one is slow and
the other is fast. Line 1 generally aligns this function to a page bound-
ary (here 4KB) and .space does a more fine-grained alignment on byte
granularity which could also be achieved with instructions that have
an encoding of the required size.

2. Lines 4, 19, and 28: Set the observe flag (cf. 4.6) to start measuring instruc-
tions. The register %rdi contains the pointer to this shared variable.

3. Lines 5-9, 15-18, and 24-27: Necessary such that the double peaks occur.
We assume, consistent with our hypothesis from 5.1, that this creates
the discussed microarchitectural state that triggers the cache bypassing
optimization for one of the target movs, but not the other.

4. Lines 11-12: Take the if-branch in case the secret value is zero, other-
wise jump to the else branch (that starts at line 22). The secret value,
passed as an argument to the function asm poor mans cmov, is stored
in %rsi.

5. Lines 14 and 23: The measured instructions; One in the if-branch, mov-
ing %rdx to the stack, and the other in the else-branch, moving a dif-
ferent register (%rcx) to the same stack location.

We will now explain how we perform and evaluate a side-channel attack on
this program and present the results in comparison with Nemesis [7]. As we
will discuss in more detail in section 6.1, Nemesis is a side channel attack
that is based on SGX-Step as well. In contrast to our tool, it does not con-
sider the challenges presented in section 4 and we will show that it is less
precise for this reason. We use the following methodology to evaluate the
side-channel accuracy of both tools on the poor man’s cmov example: We
generate and store random secret bits before starting the enclave. Inside the
enclave, we run the poor man’s cmov code in a loop and take the branches
according to our pre-generated secrets. We always measure 1000 branches
in one measurement and we perform 1000 of those measurements in differ-
ent enclaves and show the mean percentage of correctly guessed branches
as well as the standard deviation. Apart from code snippet 3, which we
call the short version, we also measure a longer program that uses more
padding inside both branches. We can only count measurements that cap-
tured the correct number of instructions, because otherwise we do not know
where we desynchronized with the instruction stream, i.e. where we started
to measure the wrong instructions. Therefore, we calculate the mean and
standard deviation exclusively from correct measurements and indicate the
percentage of correct measurements that were produced. If the used tool
aborts, e.g. because it detects problems with the measurement, we do three
retries before we abort and count this measurement as unsuccessful. Both
tools, Nemesis and ours, use the interrupt method (cf. 3.3.3) to single-step
the execution of the victim code and log all instruction timings. Afterwards,

61

5. Applications

Code Snippet 3 Poor Man’s cmov Victim Code

1: .align 0x1000
2: .space 0x7
3: asm poor mans cmov:
4: movb $1, (%rdi) . start counting instructions
5: test %rax, %rax
6: movq %rcx, -8(%rsp)
7: test %rax, %rax
8: movq %rcx, -8(%rsp)
9: test %rax, %rax

10:
11: test %rsi, %rsi
12: jnz .elseBranch
13: . branch for %rsi = 0
14: movq %rdx, -8(%rsp) . measured instruction
15: test %rax, %rax
16: movq %rdx, -8(%rsp)
17: test %rax, %rax
18: movq %rdx, -8(%rsp)
19: movb $0, (%rdi) . stop counting instructions
20: ret
21: . branch for %rsi = 1
22: .elseBranch:
23: movq %rcx, -8(%rsp) . measured instruction
24: test %rax, %rax
25: movq %rcx, -8(%rsp)
26: test %rax, %rax
27: movq %rcx, -8(%rsp)
28: movb $0, (%rdi) . stop counting instructions
29: ret

we extract the execution times of the measured instructions (in snippet 3
they are on line 14 respective 23) and sort them. We categorise the slower
half as having executed the if-branch (which is aligned to be the slower mov)
and the other half as else-branches. We do this simple categorisation be-
cause in expectation 50% of all measurements take either branch. We can
evaluate if we recognized the correct branches by comparing with the pre-
generated secret bits. Figure 5.12 shows our execution time measurements
of the movs in the two branches of the long version of the poor man’s cmov
example. Since those measurements form two clearly distinguishable peaks
for the two branches, it is not surprising that we can detect them with high
accuracy, as we will show in the next paragraph. However, the shorter ver-
sion (shown in code snippet 3) is more difficult to distinguish, since there is

62

5.2. Poor Man’s cmov

Figure 5.12: Compares the execution time of the mov in the true branch
(%rsi = 0) with the mov in the other branch (%rsi = 1).

Figure 5.13: Compares the execution time of the mov in the true branch
(%rsi = 0) with the mov in the other branch (%rsi = 1).

more noise for both branches as figure 5.13 shows.

Figure 5.14 shows the absolute number of correctly guessed branches in a
bar diagram and table 52 provides the numerical results of this comparison
in more detail. We test the short version of the poor man’s cmov example
– which we abbreviate with V1 – for two different offsets, which specify the

63

5. Applications

alignment (line 2 for code snippet 3). This is relevant for the short version,
because the branches are compact enough that they fit into a single cache
line (the instructions from line 12 to 29 encode to only 52 bytes and thus fit
in a 64B cache line). Therefore we measure V1 once, such that the if-clause
on line 12 is aligned to 64B and the branches are in one cache line and once
such that they spread across two cache lines. The middle bars in figure
5.14 show that it is more difficult to detect V1 in a single cache line than
any other version, since those are the lowest bars for every combination
of devices and measurement tools. The dotted line in figure 5.14 shows
the threshold of 500 correct guesses, which can be achieved by randomly
guessing branches. For V1 in a single cache line, our tool can still leak
clearly more than half of the branches on the NUC and only slightly more
than half on the laptop. Nemesis is below the threshold because it only
captures 27.7% of all measurements correctly, as table 52 shows. For the
ones that it captures, it is more accurate than our tool (it captures 59.5%
of them compared to the 54.6% that we detect correctly on the laptop). We
noticed that our prediction tends to be worse for faster enclaves8, therefore it
is possible that Nemesis misses those cases (which does not affect the mean)
while we make inaccurate predictions that lower our average accuracy. In
general, we see that the branch detection of our tool is better on the NUC
than on the laptop: The blue bar in figure 5.14 is the highest for all versions
of the victim code. We also see that we can leak the secret of the long version
(called V2 in figure 5.14) very precisely: On average 98.1% of the guesses are
correct on the NUC and 97.5% on the laptop (see table 52). Nemesis has an
absolute number of correct guesses for the long version that is only slightly
above the threshold because only 55.6% of its branch guesses are correct.
We conclude that our tool reliably captures all measurements correctly and
can exploit this timing side-channel with significantly higher accuracy than
Nemesis in most cases.

8I.e. enclaves where ERSEUME and AEX take less time (cf. 4.1)

64

5.2. Poor Man’s cmov

Figure 5.14: Comparison of the side-channel accuracy on the poor man’s
cmov examples of our tool and Nemesis [7]. We measure 1000 branches in
one measurement and show the average of the number of correctly guessed
branches over 1000 measurements. We look at two different versions of
the poor man’s cmov example: The short version, called V1, of the poor
man’s cmov example is shown in code snippet 3, the long one (V2) has
more padding inside the loops. We test two alignments for V1, one of them
such that both branches together fit into a single cache line. The dotted
line shows the threshold at 500 correct guesses, that could be achieved with
random guessing.

65

5. Applications

Table 52: Comparison of the side-channel accuracy on the poor man’s cmov
examples of our tool and Nemesis [7]. We measure 1000 branches in one
measurement and show the mean percentage of correctly guessed branches
for 1000 measurements. A correctly captured measurement is one that mea-
sured the correct number of instructions. The short version, called V1, of
the poor man’s cmov example is shown in code snippet 3, the long one (V2)
has more padding inside the loops. We test two alignments for V1, one of
them such that both branches together fit into a single cache line.

Cache
Lines

Correctly
Captured

Mean Standard
Deviation

Our Tool (NUC)
short version V1 2 100% 88.2 12.9

1 100% 75.4 15.9
long version V2 > 2 100% 98.1 2.8

Our Tool (Latitude)
short version V1 2 100% 66.8 7.5

1 100% 54.6 8.1
long version V2 > 2 100% 97.5 7.1

Nemesis (Latitude)
short version V1 2 94.1% 60.3 4.1

1 27.7% 59.5 3.7
long version V2 > 2 95.6% 55.6 13.3

66

Chapter 6

Conclusion and Related Work

In this chapter we will first summarize the contributions of this thesis, in-
cluding the improvements over the original SGX-Step framework. Further-
more, we will mention possibly interesting research directions for which our
tool could be useful.

6.1 Comparing with SGX-Step

We distinguish between our fundamental changes to the SGX-Step frame-
work and our additions to the measurement technique. Nemesis [7] (which
is from the same authors as SGX-Step) goes in the same direction as our
work and also modifies SGX-Step to do time measurements. However, Neme-
sis is less precise than our tool (cf. 5.2). All improvements that we summarise
in the following are improvements compared to Nemesis as well, not only
SGX-Step.

The major improvements of the SGX-Step framework are following:

1. Multiple test cases can be measured easily inside the same enclave and
their plotting is automated. (4.1)

2. Better instruction serialization barriers before and after the measure-
ment to reduce noise. (3.2.1, 3.3.3)

3. Reduced cache pollution due to constant time measurement code and
delayed instruction filtering and logging (4.3, 4.4)

4. Multiple consistency checks to detect imprecise APIC timers, miscon-
figured tests and instructions that can execute in two parts. As well
as another approach to allow thousands of test code pages while still
protect against false positives. (4.5, 4.6)

5. The notion of initial, prepare and test instructions to logically structure
test cases. (3.3.1)

67

6. Conclusion and Related Work

Enhancements of the measurement technique and new features are:

1. New plot types to gain more insights about measurements:

1.1. Histogram with prepare instructions (3.4.2) to prevent hidden in-
formation like the slow double peak in section 5.1.

1.2. Measurements-over-time plot to display unprocessed data which
helps to recognize patterns. (3.4.3, 5.1)

1.3. Bar plot to investigate which instruction sequences are slower
than others. (3.4.4)

2. Other measurement options that all share the same test case specifica-
tions:

2.1. Measure timings outside the enclave to see differences to instruc-
tions inside the enclave. (3.3.2)

2.2. Counter method to cross validate results of SGX-Step (although
they have lower precision). (3.3.4)

3. Filtering of outliers in general and especially at page boundaries to get
a meaningful variance and compact plots. (3.4, 4.2)

4. Demonstration of how we set flags (for operations like cmov) and write
to memory. (4.8, 4.9, 5.1)

5. Theoretically, we can apply deconvolution to filter out the noise of AEX
and ERESUME, however, in practice better zero steps measurements
would be needed for this feature to be useful. (4.10)

6.2 Further research

This section is a collection of some ideas that could be interesting to further
investigate.

Different Entry and Exit Times. An unanswered question is why different
enclaves take varying time for AEX and ERESUME (which makes different
enclaves incomparable as we saw in section 4.1). It would be interesting
to investigate if those differences for example depend on which memory
pages the enclave has to restore: If there are slower and faster pages, can
we influence which ones are used to make different enclave measurements
comparable? Or does this depend on what the enclave has to restore (e.g.
the number of registers that were actually used in the enclave) and could
this be used as a side channel?

68

6.2. Further research

Poor Man’s cmov The poor man’s cmov example could be investigated fur-
ther: Does observing performance counters of the processor provide further
evidence that the double peaks are caused by cache bypassing (e.g. when
there are much less L1 cache hits for instruction measurements that have
double peaks)? Are there other instructions or combinations of instructions
that show double peaks? For this purpose, finding candidates with auto-
mated fuzzing could be interesting. Additionally, security relevant libraries
could be searched for code sections that are vulnerable to this side channel.

Method Comparison. It would also be interesting to further compare re-
sults from the interrupt to both the counter method and measurements out-
side the enclave. This could also provide further insights on how exactly
SGX-Step works (see paragraph 2.2.4). For example, movnti is only slower
when we measure it with the interrupt method: Figure 6.1 shows that we
can measure neither with the counter method inside the enclave nor outside
a difference between movnti and mov. In general, trying to reproduce the
double peak measurements outside enclaves could provide further insights
on the conditions under which they occur. To achieve this, it might be nec-
essary to simulate the effect of AEX (e.g. clearing the pipeline).

Investigate the Restored Execution Environment. The enclave restores the
execution environment of the code it is running before it resumes it, i.e. the
code is unaware that it was interrupted. A very interesting question is, if
this makes it possible to measure details about the microarchitectural state
that we cannot obtain outside enclaves? For example, we perform our time
measurements by single-stepping through a long slide of instructions. It is
not trivial to reproduce such measurements outside, since the code used for
single-stepping would probably affect the microarchitectural state (e.g. the
pipeline and buffers).

Multi-Steps. A further improvement to the framework would be to mea-
sure multi-steps, i.e. a controlled number of instructions that are executed
together. This could be used to get more insights on the interaction of differ-
ent operations, the state of the pipeline or even branch prediction. However,
it could be more complicated than it seems to realise this. Remember that
we use an imprecise timer to interrupt a single instruction. We speculated
in section 2.2.4 that this works accurately because the interrupt must only
arrive in the window during which the first instruction is in the pipeline.
If we measure multiple instructions, hitting the right point could be more
difficult, because after the pipeline is filled, a new instruction retires poten-
tially at every cycle. However, an idea to still measure this would be to
following: We pad the group of instructions that we want to measure with
nops, then we increase the timer such that the whole group certainly exe-

69

6. Conclusion and Related Work

Figure 6.1: Comparison of movnti and mov that move from a register to
memory. Neither with the counter method (upper plot) nor outside the en-
clave (lower plot) can we measure a difference like we see with the interrupt
method. Measured on the NUC.

cutes. When the interrupt arrives, we switch back to single-stepping and
count how many nop instructions were not yet executed. We might want to
add an easily detectable ‘stopper instruction’, e.g. rdrand, which takes many
more cycles than nop, to know where the padding ends and the next test
starts. Using this, we could detect exactly after how many instructions the
interrupt arrived.

70

Bibliography

[1] Choosing Histogram Bins. http://docs.astropy.org/en/stable/

visualization/histogram.html. Visited on 2019-05-17.

[2] Skylake (client) - Microarchitectures - Intel. https://en.

wikichip.org/wiki/intel/microarchitectures/skylake_(client)

#Architecture. Visited on 2019-05-21.

[3] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, An-
dre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark Stillwell, David Goltzsche, David M. Eyers, Rüdiger
Kapitza, Peter R. Pietzuch, and Christof Fetzer. SCONE: Secure Linux
Containers with Intel SGX. In OSDI, 2016.

[4] Iddo Bentov, Yan Ji, Fan Zhang, Yunqi Li, Xueyuan Zhao, Lorenz
Breidenbach, Philip Daian, and Ari Juels. Tesseract: Real-Time Cryp-
tocurrency Exchange using Trusted Hardware. IACR Cryptology ePrint
Archive, 2017:1153, 2017.

[5] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:
SGX cache attacks are practical. CoRR, abs/1702.07521, 2017.

[6] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A Prac-
tical Attack Framework for Precise Enclave Execution Control. In Sys-
TEX@SOSP, 2017.

[7] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying
Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic.
In ACM Conference on Computer and Communications Security, 2018.

[8] Stephen Checkoway and Hovav Shacham. Iago attacks: Why the sys-
tem call API is a bad untrusted RPC interface. International Conference

71

http://docs.astropy.org/en/stable/visualization/histogram.html
http://docs.astropy.org/en/stable/visualization/histogram.html
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)#Architecture
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)#Architecture
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)#Architecture

Bibliography

on Architectural Support for Programming Languages and Operating Systems
- ASPLOS, 48, 2013-03.

[9] GNU compilers. Intel 386 and AMD x86-64 Options. https:

//gcc.gnu.org/onlinedocs/gcc-4.4.7/gcc/i386-and-x86_

002d64-Options.html, 2008. Visited on 2019-05-19.

[10] Victor Costan and Srinivas Devadas. Intel SGX Explained. IACR Cryp-
tology ePrint Archive, 2016:86, 2016.

[11] Agner Fog. Instruction tables. https://www.agner.org/optimize/

instruction_tables.pdf, 2018. Visited on 2019-05-21.

[12] Agner Fog. The microarchitecture of Intel, AMD and VIA
CPUs. https://www.agner.org/optimize/microarchitecture.pdf,
2018. Visited on 2019-05-19.

[13] Jeffrey Goldberg. Using Intel’s SGX to keep se-
crets even safer. https://blog.1password.com/

using-intels-sgx-to-keep-secrets-even-safer/, 2017-01-03.
Visited on 2019-02-26.

[14] Intel Corporation. Intel R© 64 and IA-32 Architectures Developer’s Manual:
Volume 1. Number 253665-060US. September 2016.

[15] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s
Manual Volume 2. Number 325383-060US. September 2016.

[16] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s
Manual Volume 3D. Number 332831-060US. September 2016.

[17] Pratheek Karnati. Data-in-use protection on IBM Cloud us-
ing Intel SGX. https://www.ibm.com/blogs/bluemix/2018/05/

data-use-protection-ibm-cloud-using-intel-sgx/, 2018-05-10.
Visited on 2019-02-26.

[18] David Kohlbrenner and Hovav Shacham. On the effectiveness of mit-
igations against floating-point timing channels. In USENIX Security
Symposium, 2017.

[19] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
CacheZoom: How SGX Amplifies The Power of Cache Attacks.
CoRR, abs/1703.06986, 2017.

[20] Gabriele Paoloni. How to Benchmark Code Execution Times on
Intel R© IA-32 and IA-64 Instruction Set Architectures. https:

72

https://gcc.gnu.org/onlinedocs/gcc-4.4.7/gcc/i386-and-x86_002d64-Options.html
https://gcc.gnu.org/onlinedocs/gcc-4.4.7/gcc/i386-and-x86_002d64-Options.html
https://gcc.gnu.org/onlinedocs/gcc-4.4.7/gcc/i386-and-x86_002d64-Options.html
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://blog.1password.com/using-intels-sgx-to-keep-secrets-even-safer/
https://blog.1password.com/using-intels-sgx-to-keep-secrets-even-safer/
https://www.ibm.com/blogs/bluemix/2018/05/data-use-protection-ibm-cloud-using-intel-sgx/
https://www.ibm.com/blogs/bluemix/2018/05/data-use-protection-ibm-cloud-using-intel-sgx/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf

Bibliography

//www.intel.com/content/dam/www/public/us/en/documents/

white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf,
2010-09.

[21] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing Digital
Side-Channels through Obfuscated Execution. In 24th USENIX Secu-
rity Symposium (USENIX Security 15), pages 431–446, Washington, D.C.,
2015. USENIX Association.

[22] Mark Russinovich. Azure confidential computing. https://azure.

microsoft.com/en-us/blog/azure-confidential-computing/, 2018-
05-09. Visited on 2019-02-26.

[23] Surenthar Selvaraj. Overview of an Intel Soft-
ware Guard Extensions Enclave Life Cycle. https:

//software.intel.com/en-us/blogs/2016/12/20/

overview-of-an-intel-software-guard-extensions-enclave-life-cycle,
2016-12-20. Visited on 2019-02-26.

[24] DEREK B. Simon Johnson, Dan Z. Intel R© SGX: De-
bug, Production, Pre-release – What’s the Difference?
https://software.intel.com/en-us/blogs/2016/01/07/

intel-sgx-debug-production-prelease-whats-the-difference,
2016-01-07. Visited on 2019-03-25.

[25] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: Extracting the keys to the Intel SGX king-
dom with transient out-of-order execution. In Proceedings of the 27th
USENIX Security Symposium. USENIX Association, August 2018. See
also technical report Foreshadow-NG [26].

[26] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch,
and Yuval Yarom. Foreshadow-NG: Breaking the virtual memory ab-
straction with transient out-of-order execution. Technical report, 2018.
See also USENIX Security paper Foreshadow [25].

[27] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks: Deter-
ministic Side Channels for Untrusted Operating Systems. In 2015 IEEE
Symposium on Security and Privacy, pages 640–656, May 2015.

73

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://azure.microsoft.com/en-us/blog/azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/azure-confidential-computing/
https://software.intel.com/en-us/blogs/2016/12/20/overview-of-an-intel-software-guard-extensions-enclave-life-cycle
https://software.intel.com/en-us/blogs/2016/12/20/overview-of-an-intel-software-guard-extensions-enclave-life-cycle
https://software.intel.com/en-us/blogs/2016/12/20/overview-of-an-intel-software-guard-extensions-enclave-life-cycle
https://software.intel.com/en-us/blogs/2016/01/07/intel-sgx-debug-production-prelease-whats-the-difference
https://software.intel.com/en-us/blogs/2016/01/07/intel-sgx-debug-production-prelease-whats-the-difference

Appendix A

Serializing With lfence and sfence

In this appendix, we explain in detail how we can serialize instructions to
reduce the noise of time measurements when cpuid is not available. Usually,
this is not the case and it is better to use the methodology with cpuid de-
scribed in paragraph 3.2.1. However, we actually have to use the approach
shown in code snippet 4 for the counter method (chapter 3.3.4) since it runs
inside enclaves.

We first assume, for simplicity, that all slots (on lines 3, 5, 9, and 11) of code
snippet 4 are empty. I.e. we only use the instruction rdtsc, which reads the
time stamp counter of the processor, to measure instruction execution times.
After discussing the general idea, we will show how this measurement can
be improved by using fences. Since the processor’s time stamp counter is a
64 bit value, rdtsc puts the higher 32 bits into register %edx and the lower
32 bits into %eax1. Lines 6-7 and 12-13 store those values into variables that
we can access later to log the execution time. Those variables for the first
timer are pre-fetched into the cache on lines 1-2, so that the following mov
instructions are faster.

The reason why we do not use rdtsc alone is because previous or later in-
structions could distort our measurements (out-of-order execution). Mem-
ory fences (sfence, lfence and mfence) can be used to ensure that all previous
memory operations become visible before the next instruction executes. We
look at the impact of different combinations of those fences on the measure-
ment of an add instruction outside the enclave. Snippet 4 shows the assembly
code for this time measurement. The slots mark places where it makes sense
to insert one or more fences. To simplify the notation, we introduce the fol-
lowing abbreviations: S for sfence, L for lfence, M for mfence, and X for no
fence. Then we refer for example with MXXX to the pattern that has an
mfence in slot 1 (on line 3) and no fences in all other slots.

1This way, the instruction is identical on 64 and 32 bit architectures

75

A. Serializing With lfence and sfence

Code Snippet 4 Measure add outside enclave

1: prefetch (tsc before lower)
2: prefetch (tsc before upper)
3: 〈slot 1〉
4: rdtsc
5: 〈slot 2〉
6: mov %eax, (tsc before lower)
7: mov %edx, (tsc before upper)
8: add $1, %rax . measured instruction
9: 〈slot 3〉

10: rdtsc
11: 〈slot 4〉
12: mov %eax, (tsc after lower)
13: mov %edx, (tsc after upper)

Figure 1.1: Latencies of a single add instruction when using no fences.
Measured on the NUC.

Figure 1.1 shows the histogram of a measurement without any fences (XXXX).
There is one bin for each cycle latency and the height of the bin represents
how many measurements observed this number of cycles. Although the add
instruction takes a single cycle, the mean (µ = 34) is much larger, because
we also measure moving the time stamp to memory. In fact, we measure
everything from line 5 to line 9 in snippet 4.

Compared to MXXX in figure 1.2, using no fences has a higher standard
deviation. The mean is also higher because other instructions in the out-of-

76

Figure 1.2: Latencies of a single add instruction when using a mfence before
the first rdtsc. Measured on the NUC.

Figure 1.3: Latencies of a single add instruction when using a mfence before
each rdtsc. Measured on the NUC.

order pipeline can slow down rdtsc. MXXX is the configuration that was
used in Nemesis ([7]).

However, we found that also using a fence before the second rdtsc (that
means using MXMX) improves the results by concentrating the measure-
ments further to one single cycle count as figure 1.3 shows.

77

A. Serializing With lfence and sfence

Figure 1.4: Latencies of a single add instruction when using a lfence before
each rdtsc. Measured on the NUC.

According to the Intel manual [15] mfence ‘does not serialize the instruction
stream’ (although on most hardware it seems to do so nonetheless). Thus,
we replaced it by lfence, which is also the official recommendation to use
before rdtsc in the Intel Software Developer’s Manual [15]. Figure 1.4 shows
the result of this, which concentrates even more measurements into a single
bin. It has a lower mean, since it only serializes load instructions and thus
has less overhead.

In the end, we settled to use the pattern (SL)(LS)(SL)X which uses both store
and load fences in the first three slots. We order the fences this way so
that the load fences are always closest to rdtsc, because they are the ones
that actually serialize the instruction stream. Adding fences in slot 2 has
the benefit that no instructions after rdtsc can start executing in parallel,
which improves the stability of the measurement. This can be seen in the
smaller standard deviation in figure 1.5 for the pattern (SL)(LS)(SL)X com-
pared with figure 1.6 for LXLX (which even has two peaks). Those tests
were performed on the laptop, because for the NUC in figure 1.7, there is
hardly any difference visible compared to LXLX. This might be, because the
effect of the store fences is too small to be visible because probably not many
instruction and especially not many store instructions are executed around
the time measurement. Nonetheless it is justified to add them because this
is different in general, when more complex instructions than just a simple
add are measured.

78

Figure 1.5: Latencies of a single add instruction when using both lfence and
sfence before and after the first rdtsc and before the second one. Measured
on the Latitude laptop.

Figure 1.6: Latencies of a single add instruction when using lfence before
each rdtsc. Measured on the Latitude laptop.

79

A. Serializing With lfence and sfence

Figure 1.7: Latencies of a single add instruction when using both lfence and
sfence before and after the first rdtsc and before the second one. Measured
on the NUC.

80

	Contents
	Introduction
	Background
	SGX Enclaves
	Threat Model
	Technical Overview

	SGX-Step: Framework for Precise Enclave Execution Control
	Brief Overview of How SGX-Step Works
	APIC Timer Interval
	Filtering Zero-Steps
	Interrupt Handling and Exceptions

	Measurement Setup and Methods
	General Setting
	Precise Time Measurement
	Time-Stamp Counter
	Reducing Noise

	Measurement Methods
	Background Information and Terminology
	Outside Enclave
	Interrupt Method
	Counter Method
	Overview over all Measurement Methods

	Plot types
	Histogram of Test Instructions
	Histogram of Prepare and Test Instructions
	Measurements-over-Time Plot
	Bar Plot

	11 Challenges Towards Precise Measurement
	Challenge 1: Incomparability of Different Enclaves
	Challenge 2: Measuring Across Page Borders
	Challenge 3: Cache Conflicts
	Challenge 4: Constant Time Measurement Code
	Challenge 5: Imprecise APIC Timer
	Challenge 6: Keeping Track of Instructions
	Challenge 7: Verifying Tests
	Challenge 8: Setting Flags
	Challenge 9: Writing to Memory
	Challenge 10: Two Noise Sources
	Challenge 11: Synthetic State on AEX

	Applications
	Double Peaks on Memory Write
	Poor Man's cmov

	Conclusion and Related Work
	Comparing with SGX-Step
	Further research

	Bibliography
	Serializing With lfence and sfence

