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The largest end-to-end encrypted cloud storage:
○ 280M+ accounts
○ 140B+ files
○ 10M+ active users
○ 200+ countries

Who is MEGA?
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src: https://mega.io/about (05/2023)

“MEGA does not have access to your password or your data.”
https://mega.io/security (2022)
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5 attacks

allow a malicious cloud provider to

ü Break authentication
ü Read user files
ü Upload new files

Attack Teaser
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Cryptographic design of MEGA*

*strongly simplified



Upload locally encrypted file and key.

File upload*
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file

file
KeyGen

authenticate

*strongly simplified



Upload locally encrypted file and key.

File upload*
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Upload locally encrypted file and key.

File upload*
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Download encrypted file and key, decrypt locally.

File download*
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Download encrypted file and key, decrypt locally.

File download*
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Download encrypted file and key, decrypt locally.

File download*
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Enc  (    )
file

authenticatepassword

Enc  (  )
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*strongly simplified



Generate and upload RSA secret key for authentication.

Registration*

11*strongly simplified

Enc  (      )
RSA sk

RSA pk

RSA.KeyGen
RSA

password



Client proves knowledge of password in challenge-response protocol.

Enc  (      )
RSA sk

Authentication*

12

password
auth request

c = Enc     (chall)
RSA pk

chall’ = Dec     (c)
RSA sk

*strongly simplified



Two types of keys protected by the password.

Key hierarchy*
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fileRSA sk

auth

*strongly simplified
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Attack 1: RSA auth key recovery



Exploiting the non-authenticated encryption in the authentication protocol.

chall’

Attack 1 – use of AES-ECB

15

chall’ = Dec     (c)
RSA sk

c, Enc   (      )
RSA sk

c = Enc     (chall)
RSA pk



Attack 1 – use of AES-ECB
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AES-ECB!

Exploiting the non-authenticated encryption in the authentication protocol.

chall’

chall’ = Dec     (c)
RSA sk

c, Enc   (      )
RSA sk

c = Enc     (chall)
RSA pk



Attack 1 – use of AES-ECB
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Exploiting the non-authenticated encryption in the authentication protocol.



Attack 1 – use of AES-ECB

18Credit for ECB penguin: Anthony Biondo. https://tonybox.net/posts/ecb-penguin/. (Visited 05/2023).

AES-ECB

AES

… = Enc   (      )
RSA sk

AES

AES

AES

= …RSA sk

≠

The problem is not that 
AES-ECB is deterministic!

authentication protocol*



Attack 1 – use of AES-ECB

19Credit for ECB penguin: Anthony Biondo. https://tonybox.net/posts/ecb-penguin/. (Visited 05/2023).

AES-ECB

AES

… = Enc   (      )
RSA sk

AES

AES

AES

= …RSA sk

≠

The problem is that 
AES-ECB is malleable!

authentication protocol*



Attack 1 – use of AES-ECB

20Credit for ECB penguin: Anthony Biondo. https://tonybox.net/posts/ecb-penguin/. (Visited 05/2023).

AES-ECB

AES

…

AES

= Enc   (      )
RSA skAES

AES

= …RSA sk

≠

The problem is that 
AES-ECB is malleable!

authentication protocol*



Attack 1 – RSA key format*

21*simplified

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

RSA key format*

authentication protocol*



Attack 1 – RSA-CRT decryption

22*simplified, 1Chinese Remainder Theorem

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

𝑐

𝑚! = 𝑐" 𝑚𝑜𝑑 𝑝 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

𝑐ℎ𝑎𝑙𝑙′

𝑚

Decrypt in ℤ" and ℤ# reconstruct 𝑚 ∈ ℤ$.

CRT1
𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝑢 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#



Attack 1 – key ciphertext tampering
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uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

𝑐

𝑚! = 𝑐" 𝑚𝑜𝑑 𝑝 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

*simplified, 1Chinese Remainder Theorem

Tampering with 𝑢

CRT1
𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝑢 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

𝑐ℎ𝑎𝑙𝑙′

𝑚



Tampering with 𝑢 invalidates decryption.

Attack 1 – key ciphertext tampering
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uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

𝑐

𝑚! = 𝑐" 𝑚𝑜𝑑 𝑝 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

*simplified, 1Chinese Remainder Theorem

CRT1
𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

𝑚



Attack 1 – key ciphertext tampering
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uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

*simplified, 1Chinese Remainder Theorem

But decryption still succeeds for 𝑐ℎ𝑎𝑙𝑙 < 𝑝, 𝑞.

𝑐

𝑚! = 𝑐" 𝑚𝑜𝑑 𝑝 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

𝑚

CRT1



Attack 1 – key ciphertext tampering
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uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

*simplified, 1Chinese Remainder Theorem

But decryption still succeeds for 𝑐ℎ𝑎𝑙𝑙 < 𝑝, 𝑞.

𝑐

𝑚! = 𝑐ℎ𝑎𝑙𝑙 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

𝑚

CRT1



Attack 1 – key ciphertext tampering
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uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

*simplified, 1Chinese Remainder Theorem

But decryption still succeeds for 𝑐ℎ𝑎𝑙𝑙 < 𝑝, 𝑞.

𝑐

𝑚! = 𝑐ℎ𝑎𝑙𝑙 𝑚# = 𝑐ℎ𝑎𝑙𝑙

𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

𝑚

CRT1



𝑡 = 𝑚! −𝑚# = 0
ℎ = 𝑡 ⋅ 𝒖 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

Attack 1 – key ciphertext tampering
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uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

*simplified, 1Chinese Remainder Theorem

But decryption still succeeds for 𝑐ℎ𝑎𝑙𝑙 < 𝑝, 𝑞.

𝑐

𝑚! = 𝑐ℎ𝑎𝑙𝑙 𝑚# = 𝑐ℎ𝑎𝑙𝑙

𝑚

CRT1



𝑡 = 𝑚! −𝑚# = 0
ℎ = 0 ⋅ 𝒖 = 0
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

Attack 1 – key ciphertext tampering

29

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

*simplified, 1Chinese Remainder Theorem

But decryption still succeeds for 𝑐ℎ𝑎𝑙𝑙 < 𝑝, 𝑞.

𝑐

𝑚! = 𝑐ℎ𝑎𝑙𝑙 𝑚# = 𝑐ℎ𝑎𝑙𝑙

𝑚

CRT1



Attack 1 – key ciphertext tampering
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uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

*simplified, 1Chinese Remainder Theorem

But decryption still succeeds for 𝑐ℎ𝑎𝑙𝑙 < 𝑝, 𝑞.

𝑐

𝑚! = 𝑐ℎ𝑎𝑙𝑙 𝑚# = 𝑐ℎ𝑎𝑙𝑙

𝑡 = 𝑚! −𝑚# = 0
ℎ = 0 ⋅ 𝒖 = 0
𝑚 = 𝑚# = 𝑐ℎ𝑎𝑙𝑙

𝑚

CRT1



Attack 1 – key ciphertext tampering
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uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

*simplified, 1Chinese Remainder Theorem

But decryption still succeeds for 𝑐ℎ𝑎𝑙𝑙 < 𝑝, 𝑞.

𝑐

𝑚! = 𝑐ℎ𝑎𝑙𝑙 𝑚# = 𝑐ℎ𝑎𝑙𝑙

𝑡 = 𝑚! −𝑚# = 0
ℎ = 0 ⋅ 𝒖 = 0
𝑚 = 𝑚# = 𝑐ℎ𝑎𝑙𝑙

0 0

𝑚

𝑐ℎ𝑎𝑙𝑙
𝑝, 𝑞

CRT1

0



Attack 1 – summary
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uq p d

AES-ECB

authentication protocol*

RSA key format*

*simplified

Binary search for primes 𝑝, 𝑞.



Attack 1 – summary
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uq p d

AES-ECB

authentication protocol*

RSA key format*

*simplified

Binary search for primes 𝑝, 𝑞.

chall < 𝑝, 𝑞 ?

0 0 𝑐ℎ𝑎𝑙𝑙
𝑝, 𝑞

yes

rand

no

Recover RSA sk in 512 login attempts
(later improved by [RH23] and [AHMP23])

[RH23] Ryan, Keegan, and Heninger, Nadia. "The Hidden Number Problem with 
Small Unknown Multipliers: Cryptanalyzing MEGA in Six Queries and Other 
Applications." Public-Key Cryptography. 2023.

[AHMP23] Albrecht, Martin, Haller, Miro, Mareková, Lenka, Paterson, Kenny. “Caveat 
Implementor! Key Recovery Attacks on MEGA.” Eurocrypt. 2023.

or0 𝑟𝑎𝑛𝑑



Attack 1 – impact
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● Compromised: RSA secret key (not: files)

fileRSA sk

auth
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Attack 2: file decryption



Attack 2 – AES-ECB, again! 

36*simplified

● File keys are also encrypted with AES-ECB!
● Idea: 

○ Cut and paste file key ciphertext blocks into the 
RSA secret key ciphertext

○ Target authentication protocol again

RSA sk

auth

file

AES-ECB AES-ECB

📋



Attack 2 – simplifying RSA-CRT

37*simplified

authentication protocol*

𝑐

𝑚! = 𝑐" 𝑚𝑜𝑑 𝑝 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

𝑐ℎ𝑎𝑙𝑙)

𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖) 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

CRT

Pick chall to simplify RSA-CRT equations, recover 
file key from 𝑢).

𝑚

RSA key format*

uq p d

file

AES-ECB

N = pq e-1 mod 𝜙(N) 𝑢!

file



Attack 2 – simplifying RSA-CRT

38*simplified

authentication protocol*

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) 𝑢!

RSA key format*

𝑢 ⋅ 𝑞 *

𝑚! = 𝑐" 𝑚𝑜𝑑 𝑝 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

𝑐ℎ𝑎𝑙𝑙′

𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖) 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

CRT

Pick chall to simplify RSA-CRT equations, recover 
file key from 𝑢).

𝑚
file

file



Attack 2 – simplifying RSA-CRT

39*simplified

authentication protocol*

𝑢 ⋅ 𝑞 *

𝑚! = 1 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

𝑐ℎ𝑎𝑙𝑙′

𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖) 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

CRT

Pick chall to simplify RSA-CRT equations, recover 
file key from 𝑢).

𝑚

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) 𝑢!

RSA key format*

file

file



Attack 2 – simplifying RSA-CRT

40*simplified

authentication protocol*

𝑢 ⋅ 𝑞 *

𝑚! = 1 𝑚# = 0

𝑐ℎ𝑎𝑙𝑙′

𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖) 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

CRT

Pick chall to simplify RSA-CRT equations, recover 
file key from 𝑢).

𝑚

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) 𝑢!

RSA key format*

file

file



𝑡 = 𝑚! −𝑚# = 1
ℎ = 1 ⋅ 𝒖) 𝑚𝑜𝑑 𝑝 ≜ 𝒖)
𝑚 ≜ 𝒖) ⋅ 𝑞

Attack 2 – simplifying RSA-CRT

41*simplified, △with high probability

authentication protocol*

𝑢 ⋅ 𝑞 *

𝑚! = 1 𝑚# = 0

𝑐ℎ𝑎𝑙𝑙′

CRT

Pick chall to simplify RSA-CRT equations, recover 
file key from 𝑢).

𝑚

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) 𝑢!

RSA key format*

file

file



Attack 2 – summary and impact

● Attack 2:
○ Cut and paste file key ciphertexts into RSA sk
○ Decrypt one file key per login attempt

● Compromises confidentiality of all user files

42

RSA sk

auth

file
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Attacks 3 & 4: integrity



strange construction!

Attack 3 & 4 – AES-CCM file encryption*

● AES-CCM: 
○ 𝑡𝑎𝑔 = CBC−MAC(k, nonce, )
○ 𝑐𝑡𝑥𝑡 = AES−CTR(k, nonce, )

● File key: 
○ XOR of AES key, nonce, and MAC tag

44*very simplified

file key

L𝑘 𝑛𝑜𝑛𝑐𝑒 𝑡𝑎𝑔

𝑘



𝐵+ 𝐵,

Attack 3 – still AES-ECB

● File keys encrypted with AES-ECB

45

AES-ECB

L𝑘 𝑛𝑜𝑛𝑐𝑒 𝑡𝑎𝑔

𝑘



Attack 3 – repeating CT blocks

● File keys encrypted with AES-ECB
● Attack 3:

○ Same ciphertext blocks à key 0+,-

○ 1 PTXT-CTXT pair to pass authentication

● All-zero key is suspicious

46

𝐵+ 𝐵, = 𝐵+

AES-ECB

𝑛𝑜𝑛𝑐𝑒 𝑡𝑎𝑔

0+,-

𝑛𝑜𝑛𝑐𝑒 𝑡𝑎𝑔



L𝑘

Attack 4 – avoiding detection

● Use attack 2
● Get random key and nonce
● Not detectable

47

AES-ECB
oracle

𝐵+ 𝐵,

𝑛𝑜𝑛𝑐𝑒 𝑡𝑎𝑔

𝑘
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Summary: 5 attacks



Attacks

● Attack 1: RSA key recovery
○ Malleable secret key + oracle

● Attack 2: file key recovery
○ Cut and paste AES ctxt blocks

● Attack 3: integrity attack
○ File forgery under the “zero key”

● Attack 4: framing attack
○ Like attack 3, but not detectable

● Attack 5: Bleichenbacher
○ Adapted to MEGA’s RSA padding

49

Root causes

No AE for key encryption

Missing key separation

Rolling your own crypto

Cryptographic agility

Backwards compatibility
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Towards secure cloud storage



Cloud Storage Standard

● Standardization effort…
○ …involving various stakeholders
○ …to design a well-analysed and practical E2EE cloud storage system

51



Questions?
Thank you!

Website: 
mega-awry.io

Paper: "MEGA: Malleable 
Encryption Goes Awry"

Attacks PoC:
github.com/MEGA-Awry

Additional references:
Icons from the Noun Project by: arif fauzi hakim, M Yudi Maulana, alrigel, Oh Rian, rukanicon, Тимур Минвалеев, Ami Ho, juli, Andrew Doane, 
Eucalyp, Symbolon, Adrien Coquet, Rediffusion, sahara junadir 52

https://mega-awry.io
https://github.com/MEGA-Awry/attacks-poc/
https://thenounproject.com/ariffauzihakim/
https://thenounproject.com/emwaiem18/
https://thenounproject.com/alrigel/
https://thenounproject.com/ohrianid/
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