
MEGA: Malleable Encryption Goes Awry
Miro Haller1,2

mhaller@ucsd.edu

1ETH Zurich
2University of California San Diego

Kenny Paterson1

kenny.paterson@inf.ethz.ch
Matilda Backendal1

mbackendal@inf.ethz.ch

44th IEEE Symposium on Security and Privacy, May 2023 1

The largest end-to-end encrypted cloud storage:
○ 280M+ accounts
○ 140B+ files
○ 10M+ active users
○ 200+ countries

Who is MEGA?

2

src: https://mega.io/about (05/2023)

“MEGA does not have access to your password or your data.”
https://mega.io/security (2022)

3

5 attacks

allow a malicious cloud provider to

ü Break authentication
ü Read user files
ü Upload new files

Attack Teaser

4

Cryptographic design of MEGA*

*strongly simplified

Upload locally encrypted file and key.

File upload*

5

file

file
KeyGen

authenticate

*strongly simplified

Upload locally encrypted file and key.

File upload*

6

Enc ()
file

file
KeyGen

authenticatepassword

Enc ()
file

*strongly simplified

Upload locally encrypted file and key.

File upload*

7

Enc ()
file

Enc ()file

Enc ()
file

authenticatepassword

Enc ()
file

*strongly simplified

Download encrypted file and key, decrypt locally.

File download*

8

Enc ()
file

authenticatepassword

Enc ()
file

Enc ()file

Enc ()
file

*strongly simplified

Download encrypted file and key, decrypt locally.

File download*

9

Enc ()
file

authenticatepassword

Enc ()
file

file

Enc ()
file

*strongly simplified

Download encrypted file and key, decrypt locally.

File download*

10

Enc ()
file

authenticatepassword

Enc ()
file

*strongly simplified

Generate and upload RSA secret key for authentication.

Registration*

11*strongly simplified

Enc ()
RSA sk

RSA pk

RSA.KeyGen
RSA

password

Client proves knowledge of password in challenge-response protocol.

Enc ()
RSA sk

Authentication*

12

password
auth request

c = Enc (chall)
RSA pk

chall’ = Dec (c)
RSA sk

*strongly simplified

Two types of keys protected by the password.

Key hierarchy*

13

fileRSA sk

auth

*strongly simplified

14

Attack 1: RSA auth key recovery

Exploiting the non-authenticated encryption in the authentication protocol.

chall’

Attack 1 – use of AES-ECB

15

chall’ = Dec (c)
RSA sk

c, Enc ()
RSA sk

c = Enc (chall)
RSA pk

Attack 1 – use of AES-ECB

16

AES-ECB!

Exploiting the non-authenticated encryption in the authentication protocol.

chall’

chall’ = Dec (c)
RSA sk

c, Enc ()
RSA sk

c = Enc (chall)
RSA pk

Attack 1 – use of AES-ECB

17

Exploiting the non-authenticated encryption in the authentication protocol.

Attack 1 – use of AES-ECB

18Credit for ECB penguin: Anthony Biondo. https://tonybox.net/posts/ecb-penguin/. (Visited 05/2023).

AES-ECB

AES

… = Enc ()
RSA sk

AES

AES

AES

= …RSA sk

≠

The problem is not that
AES-ECB is deterministic!

authentication protocol*

Attack 1 – use of AES-ECB

19Credit for ECB penguin: Anthony Biondo. https://tonybox.net/posts/ecb-penguin/. (Visited 05/2023).

AES-ECB

AES

… = Enc ()
RSA sk

AES

AES

AES

= …RSA sk

≠

The problem is that
AES-ECB is malleable!

authentication protocol*

Attack 1 – use of AES-ECB

20Credit for ECB penguin: Anthony Biondo. https://tonybox.net/posts/ecb-penguin/. (Visited 05/2023).

AES-ECB

AES

…

AES

= Enc ()
RSA skAES

AES

= …RSA sk

≠

The problem is that
AES-ECB is malleable!

authentication protocol*

Attack 1 – RSA key format*

21*simplified

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

RSA key format*

authentication protocol*

Attack 1 – RSA-CRT decryption

22*simplified, 1Chinese Remainder Theorem

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

𝑐

𝑚! = 𝑐" 𝑚𝑜𝑑 𝑝 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

𝑐ℎ𝑎𝑙𝑙′

𝑚

Decrypt in ℤ" and ℤ# reconstruct 𝑚 ∈ ℤ$.

CRT1
𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝑢 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

Attack 1 – key ciphertext tampering

23

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

𝑐

𝑚! = 𝑐" 𝑚𝑜𝑑 𝑝 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

*simplified, 1Chinese Remainder Theorem

Tampering with 𝑢

CRT1
𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝑢 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

𝑐ℎ𝑎𝑙𝑙′

𝑚

Tampering with 𝑢 invalidates decryption.

Attack 1 – key ciphertext tampering

24

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

𝑐

𝑚! = 𝑐" 𝑚𝑜𝑑 𝑝 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

*simplified, 1Chinese Remainder Theorem

CRT1
𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

𝑚

Attack 1 – key ciphertext tampering

25

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

*simplified, 1Chinese Remainder Theorem

But decryption still succeeds for 𝑐ℎ𝑎𝑙𝑙 < 𝑝, 𝑞.

𝑐

𝑚! = 𝑐" 𝑚𝑜𝑑 𝑝 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

𝑚

CRT1

Attack 1 – key ciphertext tampering

26

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

*simplified, 1Chinese Remainder Theorem

But decryption still succeeds for 𝑐ℎ𝑎𝑙𝑙 < 𝑝, 𝑞.

𝑐

𝑚! = 𝑐ℎ𝑎𝑙𝑙 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

𝑚

CRT1

Attack 1 – key ciphertext tampering

27

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

*simplified, 1Chinese Remainder Theorem

But decryption still succeeds for 𝑐ℎ𝑎𝑙𝑙 < 𝑝, 𝑞.

𝑐

𝑚! = 𝑐ℎ𝑎𝑙𝑙 𝑚# = 𝑐ℎ𝑎𝑙𝑙

𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

𝑚

CRT1

𝑡 = 𝑚! −𝑚# = 0
ℎ = 𝑡 ⋅ 𝒖 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

Attack 1 – key ciphertext tampering

28

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

*simplified, 1Chinese Remainder Theorem

But decryption still succeeds for 𝑐ℎ𝑎𝑙𝑙 < 𝑝, 𝑞.

𝑐

𝑚! = 𝑐ℎ𝑎𝑙𝑙 𝑚# = 𝑐ℎ𝑎𝑙𝑙

𝑚

CRT1

𝑡 = 𝑚! −𝑚# = 0
ℎ = 0 ⋅ 𝒖 = 0
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

Attack 1 – key ciphertext tampering

29

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

*simplified, 1Chinese Remainder Theorem

But decryption still succeeds for 𝑐ℎ𝑎𝑙𝑙 < 𝑝, 𝑞.

𝑐

𝑚! = 𝑐ℎ𝑎𝑙𝑙 𝑚# = 𝑐ℎ𝑎𝑙𝑙

𝑚

CRT1

Attack 1 – key ciphertext tampering

30

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

*simplified, 1Chinese Remainder Theorem

But decryption still succeeds for 𝑐ℎ𝑎𝑙𝑙 < 𝑝, 𝑞.

𝑐

𝑚! = 𝑐ℎ𝑎𝑙𝑙 𝑚# = 𝑐ℎ𝑎𝑙𝑙

𝑡 = 𝑚! −𝑚# = 0
ℎ = 0 ⋅ 𝒖 = 0
𝑚 = 𝑚# = 𝑐ℎ𝑎𝑙𝑙

𝑚

CRT1

Attack 1 – key ciphertext tampering

31

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) q-1 mod p

authentication protocol*

RSA key format*

*simplified, 1Chinese Remainder Theorem

But decryption still succeeds for 𝑐ℎ𝑎𝑙𝑙 < 𝑝, 𝑞.

𝑐

𝑚! = 𝑐ℎ𝑎𝑙𝑙 𝑚# = 𝑐ℎ𝑎𝑙𝑙

𝑡 = 𝑚! −𝑚# = 0
ℎ = 0 ⋅ 𝒖 = 0
𝑚 = 𝑚# = 𝑐ℎ𝑎𝑙𝑙

0 0

𝑚

𝑐ℎ𝑎𝑙𝑙
𝑝, 𝑞

CRT1

0

Attack 1 – summary

32

uq p d

AES-ECB

authentication protocol*

RSA key format*

*simplified

Binary search for primes 𝑝, 𝑞.

Attack 1 – summary

33

uq p d

AES-ECB

authentication protocol*

RSA key format*

*simplified

Binary search for primes 𝑝, 𝑞.

chall < 𝑝, 𝑞 ?

0 0 𝑐ℎ𝑎𝑙𝑙
𝑝, 𝑞

yes

rand

no

Recover RSA sk in 512 login attempts
(later improved by [RH23] and [AHMP23])

[RH23] Ryan, Keegan, and Heninger, Nadia. "The Hidden Number Problem with
Small Unknown Multipliers: Cryptanalyzing MEGA in Six Queries and Other
Applications." Public-Key Cryptography. 2023.

[AHMP23] Albrecht, Martin, Haller, Miro, Mareková, Lenka, Paterson, Kenny. “Caveat
Implementor! Key Recovery Attacks on MEGA.” Eurocrypt. 2023.

or0 𝑟𝑎𝑛𝑑

Attack 1 – impact

34

● Compromised: RSA secret key (not: files)

fileRSA sk

auth

35

Attack 2: file decryption

Attack 2 – AES-ECB, again!

36*simplified

● File keys are also encrypted with AES-ECB!
● Idea:

○ Cut and paste file key ciphertext blocks into the
RSA secret key ciphertext

○ Target authentication protocol again

RSA sk

auth

file

AES-ECB AES-ECB

📋

Attack 2 – simplifying RSA-CRT

37*simplified

authentication protocol*

𝑐

𝑚! = 𝑐" 𝑚𝑜𝑑 𝑝 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

𝑐ℎ𝑎𝑙𝑙)

𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖) 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

CRT

Pick chall to simplify RSA-CRT equations, recover
file key from 𝑢).

𝑚

RSA key format*

uq p d

file

AES-ECB

N = pq e-1 mod 𝜙(N) 𝑢!

file

Attack 2 – simplifying RSA-CRT

38*simplified

authentication protocol*

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) 𝑢!

RSA key format*

𝑢 ⋅ 𝑞 *

𝑚! = 𝑐" 𝑚𝑜𝑑 𝑝 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

𝑐ℎ𝑎𝑙𝑙′

𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖) 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

CRT

Pick chall to simplify RSA-CRT equations, recover
file key from 𝑢).

𝑚
file

file

Attack 2 – simplifying RSA-CRT

39*simplified

authentication protocol*

𝑢 ⋅ 𝑞 *

𝑚! = 1 𝑚# = 𝑐" 𝑚𝑜𝑑 𝑞

𝑐ℎ𝑎𝑙𝑙′

𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖) 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

CRT

Pick chall to simplify RSA-CRT equations, recover
file key from 𝑢).

𝑚

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) 𝑢!

RSA key format*

file

file

Attack 2 – simplifying RSA-CRT

40*simplified

authentication protocol*

𝑢 ⋅ 𝑞 *

𝑚! = 1 𝑚# = 0

𝑐ℎ𝑎𝑙𝑙′

𝑡 = 𝑚! −𝑚# 𝑚𝑜𝑑 𝑝
ℎ = 𝑡 ⋅ 𝒖) 𝑚𝑜𝑑 𝑝
𝑚 = ℎ ⋅ 𝑞 + 𝑚#

CRT

Pick chall to simplify RSA-CRT equations, recover
file key from 𝑢).

𝑚

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) 𝑢!

RSA key format*

file

file

𝑡 = 𝑚! −𝑚# = 1
ℎ = 1 ⋅ 𝒖) 𝑚𝑜𝑑 𝑝 ≜ 𝒖)
𝑚 ≜ 𝒖) ⋅ 𝑞

Attack 2 – simplifying RSA-CRT

41*simplified, △with high probability

authentication protocol*

𝑢 ⋅ 𝑞 *

𝑚! = 1 𝑚# = 0

𝑐ℎ𝑎𝑙𝑙′

CRT

Pick chall to simplify RSA-CRT equations, recover
file key from 𝑢).

𝑚

uq p d

AES-ECB

N = pq e-1 mod 𝜙(N) 𝑢!

RSA key format*

file

file

Attack 2 – summary and impact

● Attack 2:
○ Cut and paste file key ciphertexts into RSA sk
○ Decrypt one file key per login attempt

● Compromises confidentiality of all user files

42

RSA sk

auth

file

43

Attacks 3 & 4: integrity

strange construction!

Attack 3 & 4 – AES-CCM file encryption*

● AES-CCM:
○ 𝑡𝑎𝑔 = CBC−MAC(k, nonce,)
○ 𝑐𝑡𝑥𝑡 = AES−CTR(k, nonce,)

● File key:
○ XOR of AES key, nonce, and MAC tag

44*very simplified

file key

L𝑘 𝑛𝑜𝑛𝑐𝑒 𝑡𝑎𝑔

𝑘

𝐵+ 𝐵,

Attack 3 – still AES-ECB

● File keys encrypted with AES-ECB

45

AES-ECB

L𝑘 𝑛𝑜𝑛𝑐𝑒 𝑡𝑎𝑔

𝑘

Attack 3 – repeating CT blocks

● File keys encrypted with AES-ECB
● Attack 3:

○ Same ciphertext blocks à key 0+,-

○ 1 PTXT-CTXT pair to pass authentication

● All-zero key is suspicious

46

𝐵+ 𝐵, = 𝐵+

AES-ECB

𝑛𝑜𝑛𝑐𝑒 𝑡𝑎𝑔

0+,-

𝑛𝑜𝑛𝑐𝑒 𝑡𝑎𝑔

L𝑘

Attack 4 – avoiding detection

● Use attack 2
● Get random key and nonce
● Not detectable

47

AES-ECB
oracle

𝐵+ 𝐵,

𝑛𝑜𝑛𝑐𝑒 𝑡𝑎𝑔

𝑘

48

Summary: 5 attacks

Attacks

● Attack 1: RSA key recovery
○ Malleable secret key + oracle

● Attack 2: file key recovery
○ Cut and paste AES ctxt blocks

● Attack 3: integrity attack
○ File forgery under the “zero key”

● Attack 4: framing attack
○ Like attack 3, but not detectable

● Attack 5: Bleichenbacher
○ Adapted to MEGA’s RSA padding

49

Root causes

No AE for key encryption

Missing key separation

Rolling your own crypto

Cryptographic agility

Backwards compatibility

50

Towards secure cloud storage

Cloud Storage Standard

● Standardization effort…
○ …involving various stakeholders
○ …to design a well-analysed and practical E2EE cloud storage system

51

Questions?
Thank you!

Website:
mega-awry.io

Paper: "MEGA: Malleable
Encryption Goes Awry"

Attacks PoC:
github.com/MEGA-Awry

Additional references:
Icons from the Noun Project by: arif fauzi hakim, M Yudi Maulana, alrigel, Oh Rian, rukanicon, Тимур Минвалеев, Ami Ho, juli, Andrew Doane,
Eucalyp, Symbolon, Adrien Coquet, Rediffusion, sahara junadir 52

https://mega-awry.io
https://github.com/MEGA-Awry/attacks-poc/
https://thenounproject.com/ariffauzihakim/
https://thenounproject.com/emwaiem18/
https://thenounproject.com/alrigel/
https://thenounproject.com/ohrianid/
https://thenounproject.com/rukanicon/
https://thenounproject.com/timur.minvaleev/
https://thenounproject.com/ami.hooo/
https://thenounproject.com/julijony1/
https://thenounproject.com/andydoane/
https://thenounproject.com/eucalyp/
https://thenounproject.com/symbolon/
https://thenounproject.com/coquet_adrien/
https://thenounproject.com/rediffusion/
https://thenounproject.com/saharajunadir/

