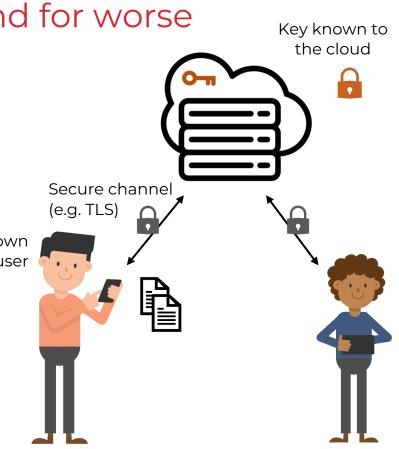
Why E2EE Cloud Storage is hard

Cryptanalysis of the MEGA Cloud Storage by **Miro Haller**, **Matilda Backendal** & Kenny Paterson

Cloud storage, for better and for worse


Advantages

- + Outsource storage
- + Easy file access and back-up
- + Sharing and collaboration

and disadvantages...

- Privacy

Key known only to the user

End-to-End Encryption: Why do we care?

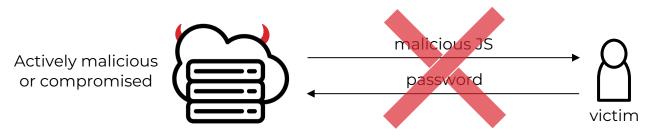

- Without E2EE: Cloud provider can
 - ...read sensitive files
 - ...perform analytics and serve targeted advertising
 - ...be hacked by malicious external actors
- With E2EE: Even a malicious cloud *cannot*
 - o ...access user data
 - ...modify user files

Image from: https://dayoftheshirt.com/shirts/93714/have-your-cakeand-eat-it-too-teeturtle

Threat model and scope

- Security goals:
 - Confidentiality and integrity

- Out of scope:
 - Availability
 - User anonymity
 - Targeted dictionary attacks on user password
 - Serving malicious JavaScript

Consumer cloud storage

Provider	Active users	
Google Drive	> 1 billion	
CneDrive OneDrive	0.5 – 1 billion	
🗯 iCloud	> 850 million	
	>700 million	

Sources:

Google Drive (2018): https://techcrunch.com/2018/07/25/google-drive-will-hit-a-billion-users-this-week/?guccounter=1

OneDrive (2015, 2022): <u>https://www.computerworld.com/article/3003140/microsofts-onedrive-changes-follow-the-money.html</u>, <u>https://news.microsoft.com/bythenumbers/en/give</u>

iCloud (2018): https://www.cnbc.com/2018/02/11/apple-could-sell-icloud-for-the-enterprise-barclays-says.html

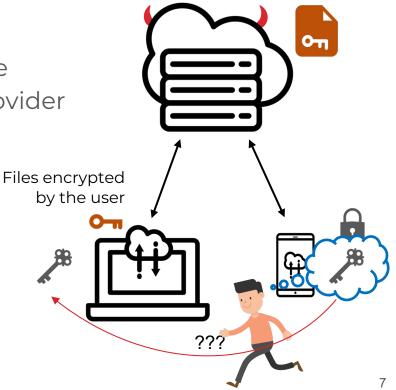
Dropbox (2022): https://dropbox.gcs-web.com/news-releases/news-release-details/dropbox-announces-second-guarter-fiscal-2022-results

Consumer cloud storage lacks privacy

Provider	Active users	E2EE
Google Drive	> 1 billion	×
OneDrive	0.5 – 1 billion	×
🔹 iCloud	> 850 million	×
🛟 Dropbox	>700 million	×

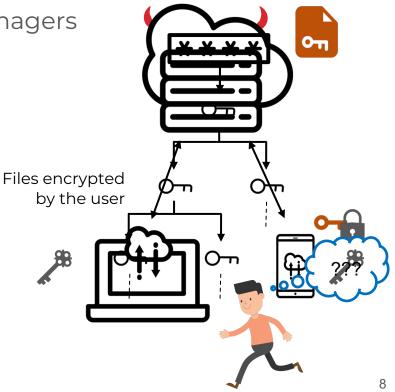
Sources:

Google Drive (2018): https://techcrunch.com/2018/07/25/google-drive-will-hit-a-billion-users-this-week/?guccounter=1

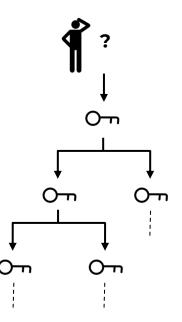

OneDrive (2015, 2022): <u>https://www.computerworld.com/article/3003140/microsofts-onedrive-changes-follow-the-money.html</u>, <u>https://news.microsoft.com/bythenumbers/en/give</u>

iCloud (2018): https://www.cnbc.com/2018/02/11/apple-could-sell-icloud-for-the-enterprise-barclays-says.html

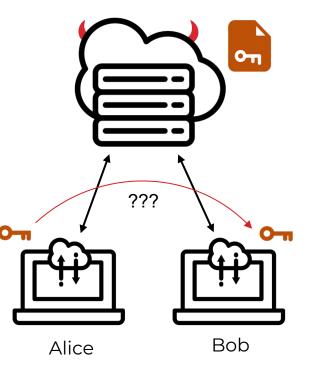
Dropbox (2022): https://dropbox.gcs-web.com/news-releases/news-release-details/dropbox-announces-second-guarter-fiscal-2022-results


Problem #1: key management

- Want: data available from any device
- Challenge: transfer via untrusted provider
- Solution: encrypt the keys


Problem #2: users are not good key managers

• Solution: passwords


Problem #2: users are not good key managers

- Solution: passwords
- Challenge: passwords!
 - Users are not good password managers either...
 - Forgotten password \Rightarrow lost access
 - Password leak/compromise \Rightarrow key recovery

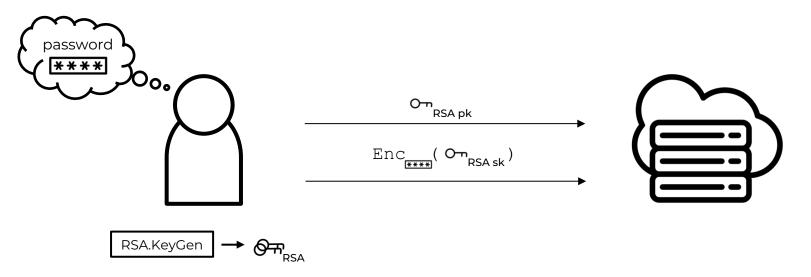
Problem #3: sharing encrypted files

- Want: keys shared across users
- Challenge: establishing trusted channel

MEGA's Design

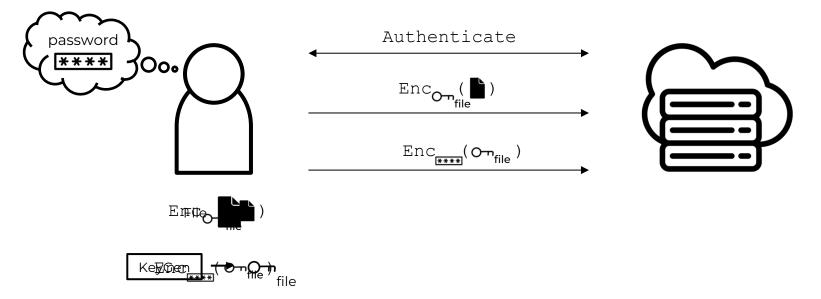
Who is MEGA?

"MEGA does not have access to your password or your data." https://mega.io/security

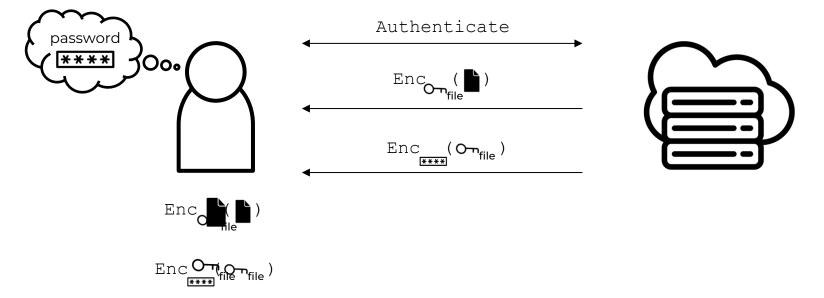

The largest E2EE cloud storage service

- 10+ million daily active users
- 270+ million accounts
- 130+ billion files
- 1000+ PB of stored data

MEGA

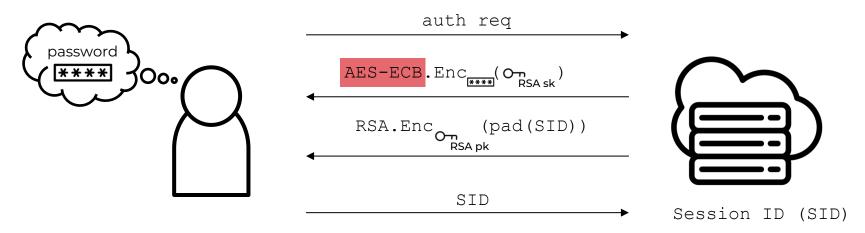


Client uploads encrypted RSA secret key to the cloud to set up authentication.

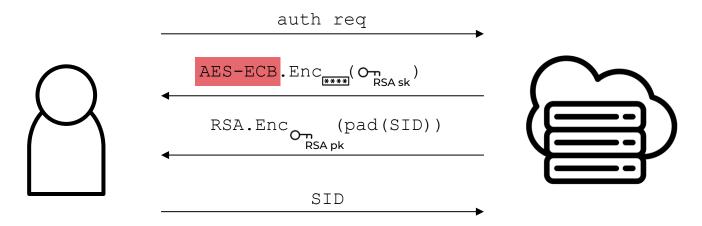

File upload^{*}

The user locally generates a file encryption key and uploads the encrypted file and encrypted file key to the cloud.

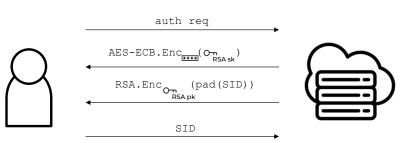
File download^{*}

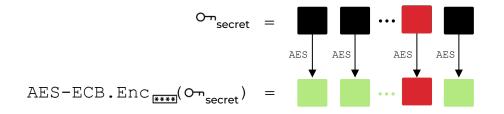

The user retrieves the encrypted file and encrypted key material. They recover the file key using the password and decrypt the file.

Cryptanalysis of MEGA

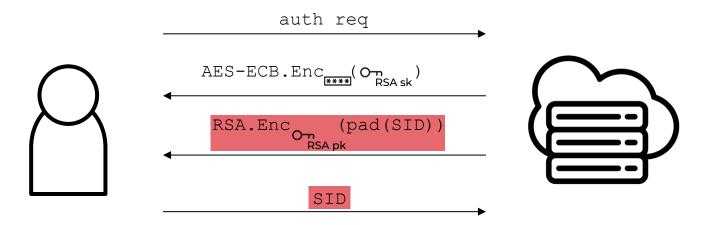

Attack 1: RSA key recovery*

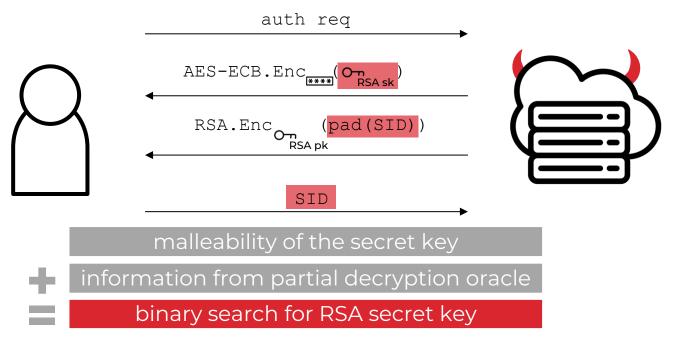
MEGA's user authentication:


AES-ECB is clearly a bad choice.

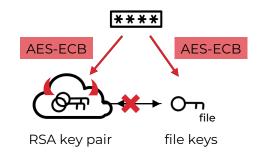

MEGA's user authentication:

AES-ECB is clearly a bad choice.


MEGA's user authentication:


AES-ECB is clearly a bad choice.

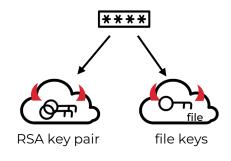
MEGA's user authentication:


Partial decryption oracle for chosen SID!

MEGA's user authentication:

*strongly simplified

- Impact:
 - RSA key recovery in 512 logins*
- Enables attack 2: file key recovery
 - Adversary knows RSA key from Attack 1
 - File keys are also encrypted with AES-ECB



Cut and paste AES-ECB ciphertext blocks from file key to RSA secret key ciphertext.

Attack 2: file key recovery

• Impact:

- Cheap AES-ECB decryption oracle
- This allows compromise of file (and other) keys
- And hence decryption of all user data!

Attacks

- Attack 1: RSA key recovery
 Malleable secret key + oracle
- Attack 2: file key recovery
 Cut and paste AES ctxt blocks
- Attack 3: integrity attack
 - File forgery under the "zero key"
- Attack 4: framing attack
 - Like attack 3, but not detectable
- Attack 5: Bleichenbacher
 - Adapted to MEGA's RSA padding

Mistakes to avoid

- No AE for key encryption
- Missing key separation
- Rolling your own crypto
- No cryptographic agility

Lessons from MEGA

- Aim for E2EE
- Have a bug bounty program
- Collaborate during disclosure
- Full mitigation impossible
 - Re-encryption requires > 185 days
- Recovery from compromise?

Mistakes to avoid

- No AE for key encryption
- Missing key separation
- Rolling your own crypto
- No cryptographic agility
- No post-compromise security

How To E2EE Cloud Storage

Goals and challenges for E2EE cloud storage

- Ideal properties
 - Cryptographic agility
 - o Modularity
 - Basic features: multi-device access, file sharing
 - Advanced features: post-compromise security, forward security
- Challenges
 - \circ Device support \rightarrow key management
 - Users handle keys, or passwords
 - Key exchange between users
 - Post-compromise and forward security for persistent data
- Malicious storage provider: a strong threat model
 - Today: cryptographic design from a malicious provider!

Looking ahead

- Standardization effort...
 - ...involving various stakeholders
 - ...to design a well-analysed and practical E2EE cloud storage system

• How do we interest providers?

- Economic incentives: features, integration
- Political incentives: data privacy laws

Paper: "**MEGA**: Malleable Encryption Goes Awry"

Website: <u>mega-awry.io</u>

Attacks PoC: <u>github.com/MEGA-Awry</u>

Additional references:

Icons from the <u>Noun Project</u> by: <u>arif fauzi hakim</u>, <u>M Yudi Maulana</u>, <u>alrigel</u>, <u>Oh Rian</u>, <u>rukanicon</u>, <u>Тимур Минвалеев</u>, <u>Ami Ho</u>, <u>juli</u>, <u>Andrew Doane</u>, Eucalyp, Symbolon, Adrien Coquet, Rediffusion